OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 5 — Sep. 1, 2011
  • pp: 970–979

On the scaling behavior of dipole and quadrupole modes in coupled plasmonic nanoparticle pairs

J. P. Clarkson, J. Winans, and P. M. Fauchet  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 5, pp. 970-979 (2011)
http://dx.doi.org/10.1364/OME.1.000970


View Full Text Article

Enhanced HTML    Acrobat PDF (2913 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate shifts of localized surface plasmon resonance (LSPR) caused by coupling between Ag nanospheres in close proximity to one another by using three-dimensional (3D) finite-difference time-domain (FDTD) simulations and exact Mie solutions. Our findings agree well with previous reports of universal scaling in coupled nanostructures where the relative fractional shift in dipole plasmon resonance wavelength decays over an inter-particle gap with the same universal trend independent of particle size, shape and material composition. To expand upon this, we investigate universal scaling of the dipole mode in coupled particle pairs greater than 100 nm in diameter where higher-order modes of resonance (i.e. both dipole and quadrupole modes of resonance) are present. It is shown that fractional shifts of the quadrupole mode in coupled sphere-pairs do not follow a universal scaling trend independent of particle size. Rather, the fractional shifts are dependent on a predetermined set of particle sizes defined by the particle-pair spacing at which the onset of shifts follow bands that are dependent on the center-to-center particle distance.

© 2011 OSA

OCIS Codes
(290.5850) Scattering : Scattering, particles
(350.6050) Other areas of optics : Solar energy

ToC Category:
Plasmonics

History
Original Manuscript: July 1, 2011
Revised Manuscript: August 9, 2011
Manuscript Accepted: August 14, 2011
Published: August 19, 2011

Virtual Issues
Nanoplasmonics and Metamaterials (2011) Optical Materials Express

Citation
J. P. Clarkson, J. Winans, and P. M. Fauchet, "On the scaling behavior of dipole and quadrupole modes in coupled plasmonic nanoparticle pairs," Opt. Mater. Express 1, 970-979 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-5-970


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010). [CrossRef] [PubMed]
  2. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  3. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003). [CrossRef] [PubMed]
  4. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120–1–093120–3 (2006).
  5. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1(10), 573–576 (2007). [CrossRef]
  6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  7. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  8. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113–1–191113–3 (2008).
  9. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904–1–121904–3 (2008).
  10. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
  11. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003). [CrossRef]
  12. C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009). [CrossRef] [PubMed]
  13. C. Tabor, D. Van Haute, and M. A. El-Sayed, “Effect of orientation on plasmonic coupling between gold nanorods,” ACS Nano 3(11), 3670–3678 (2009). [CrossRef] [PubMed]
  14. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007). [CrossRef]
  15. P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112(13), 4954–4960 (2008). [CrossRef]
  16. P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006). [CrossRef] [PubMed]
  17. P. K. Jain and M. A. El-Sayed, “Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing,” Nano Lett. 8(12), 4347–4352 (2008). [CrossRef] [PubMed]
  18. G. Mie, “Beitrage zur optik truber medien speziell kolloi- daler metallosungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
  19. D. B. Spalding, “A novel finite difference formulation for differential expressions involving both first and second derivatives,” Int. J. Numer. Methods Eng. 4(4), 551–559 (1972). [CrossRef]
  20. A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations,” IEEE Trans. Microwave. Theory Techniques 23(8), 623–630 (1975). [CrossRef]
  21. G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23(4), 377–382 (1981). [CrossRef]
  22. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65, 193408–1–193408–4 (2002).
  23. S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007). [CrossRef] [PubMed]
  24. J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–1–3379–3 (2000).
  25. J. Kottmann and O. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8(12), 655–663 (2001). [CrossRef] [PubMed]
  26. D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon modes of nanosphere trimers and quadrumers,” J. Phys. Chem. B 110(25), 12302–12310 (2006). [CrossRef] [PubMed]
  27. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109(3), 1079–1087 (2005). [CrossRef] [PubMed]
  28. V. N. Pustovit and T. V. Shahbazyan, “Finite-size effects in surface-enhanced Raman scattering in noble-metal nanoparticles: a semiclassical approach,” J. Opt. Soc. Am. A 23(6), 1369–1374 (2006). [CrossRef] [PubMed]
  29. V. Rotello, Nanoparticles – Building Blocks for Nanotechnology (Kluwer Academic / Plenum Publishers, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited