OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 5 — Sep. 1, 2011
  • pp: 998–1008

Anatomy of a femtosecond laser processed silica waveguide [Invited]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 5, pp. 998-1008 (2011)
http://dx.doi.org/10.1364/OME.1.000998


View Full Text Article

Enhanced HTML    Acrobat PDF (1101 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Waveguides are inscribed through densification of the surrounding region of a damage induced channel created by femtosecond irradiation within silica. Single mode propagation at 1.5 μm is obtained below the damage region whilst at shorter wavelengths guidance is only observed away on either side of the region. The quasi-periodic nanostructure that is induced can explain the mode profile elongation observed with polarised light at 45°. The origin of this guidance area is explored using SEM analysis, which reveals nanoporous regions within laser track structure above and below the densified region where 1.5 μm propagates. Shorter wavelength light is not supported in this area.

© 2011 OSA

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.1190) Materials : Anisotropic optical materials
(160.2750) Materials : Glass and other amorphous materials
(160.6030) Materials : Silica
(230.7390) Optical devices : Waveguides, planar
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.3390) Other areas of optics : Laser materials processing
(350.3850) Other areas of optics : Materials processing

ToC Category:
Laser Materials Processing

History
Original Manuscript: July 11, 2011
Revised Manuscript: August 11, 2011
Manuscript Accepted: August 14, 2011
Published: August 22, 2011

Virtual Issues
Femtosecond Direct Laser Writing and Structuring of Materials (2011) Optical Materials Express

Citation
J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, "Anatomy of a femtosecond laser processed silica waveguide [Invited]," Opt. Mater. Express 1, 998-1008 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-5-998


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006). [CrossRef]
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  3. M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron.14(5), 1370–1381 (2008). [CrossRef]
  4. J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids354(12-13), 1100–1111 (2008). [CrossRef]
  5. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009). [CrossRef]
  6. C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express13(14), 5377–5386 (2005). [CrossRef] [PubMed]
  7. C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, “Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett.35(9), 1443–1445 (2010). [CrossRef] [PubMed]
  8. N. Groothoff, I. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, “Bragg gratings in air-silica structured fibers,” Opt. Lett.28(4), 233–235 (2003). [CrossRef] [PubMed]
  9. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask,” Opt. Lett.29(18), 2127–2129 (2004). [CrossRef] [PubMed]
  10. S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11-13), 2387–2391 (2011). [CrossRef]
  11. S. M. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005). [CrossRef] [PubMed]
  12. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett.26(2), 93–95 (2001). [CrossRef] [PubMed]
  13. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett.29(1), 119–121 (2004). [CrossRef] [PubMed]
  14. B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express16(22), 18354–18361 (2008). [CrossRef] [PubMed]
  15. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun.171(4-6), 279–284 (1999). [CrossRef]
  16. M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express1(4), 711–723 (2011), http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-4-711 . [CrossRef]
  17. M. Lancry, P. Niay, and M. Douay, “Comparing the properties of various sensitization methods in H2-loaded, UV hypersensitized or OH-flooded standard germanosilicate fibers,” Opt. Express13(11), 4037–4043 (2005). [CrossRef] [PubMed]
  18. M. Lancry and B. Poumellec, “Multiphoton absorption processes & UV laser processing of silica-based materials,” in Proceedings of the 1st International Workshop on Multiphoton Processes in Glass and Glassy Materials, J. Canning, Ed., Sydney, Australia, December (2006).
  19. E. Bricchi and P. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett.88(11), 111119 (2006). [CrossRef]
  20. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003). [CrossRef] [PubMed]
  21. M. Lancry, F. Brisset, and B. Poumellec, “In the heart of nanogratings made up during femtosecond laser irradiation,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2010), ISBN 978–1-55752–896–4.
  22. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36(11), 3688–3689 (1965). [CrossRef]
  23. J. Canning, “Fibre gratings and devices for sensors and lasers,” Lasers Photon. Rev.2(4), 275–289 (2008). [CrossRef]
  24. J. Canning, “The characteristic curve and site-selective laser excitation of local relaxation in glass,” J. Chem. Phys.120(20), 9715–9719 (2004). [CrossRef] [PubMed]
  25. P. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett.82(10), 2199–2202 (1999). [CrossRef]
  26. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87(1), 014104 (2005). [CrossRef]
  27. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci.197–198, 891–895 (2002). [CrossRef]
  28. M. Lancry, K. Cook, J. Canning, and B. Poumellec, “Nanogratings and molecular oxygen formation during femtosecond laser irradiation in silica,” The International Quantum Electronics Conference (IQEC)/The Conference on Lasers and Electro-Optics (CLEO) Pacific Rim, (IQEC/CLEO-Pacific Rim 2011), Sydney, Australia (2011).
  29. B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. G. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express1(4), 766–782 (2011), http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-4-766 . [CrossRef]
  30. Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett.30(7), 723–725 (2005). [CrossRef] [PubMed]
  31. M. L. Knotek, “Stimulated desorption,” Rep. Prog. Phys.47(11), 1499–1561 (1984). [CrossRef]
  32. M. Lancry, B. Bourguignon, and B. Poumellec, “Anisotropic excitation of photo-luminescence in silica exposed to IR femtosecond laser light,” XII Conference on the Physics of Non-Crystalline Solids, Foz do Iguaçu, Brazil (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited