OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 6 — Oct. 1, 2011
  • pp: 1090–1099

Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]

Gururaj V. Naik, Jongbum Kim, and Alexandra Boltasseva  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 6, pp. 1090-1099 (2011)
http://dx.doi.org/10.1364/OME.1.001090


View Full Text Article

Enhanced HTML    Acrobat PDF (1083 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

As alternatives to conventional metals, new plasmonic materials offer many advantages in the rapidly growing fields of plasmonics and metamaterials. These advantages include low intrinsic loss, semiconductor-based design, compatibility with standard nanofabrication processes, tunability, and others. Transparent conducting oxides such as Al:ZnO, Ga:ZnO and indium-tin-oxide (ITO) enable many high-performance metamaterial devices operating in the near-IR. Transition-metal nitrides such as TiN or ZrN can be substitutes for conventional metals in the visible frequencies. In this paper we provide the details of fabrication and characterization of these new materials and discuss their suitability for a number of metamaterial and plasmonic applications.

© 2011 OSA

OCIS Codes
(310.6860) Thin films : Thin films, optical properties
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: July 15, 2011
Revised Manuscript: August 29, 2011
Manuscript Accepted: August 30, 2011
Published: September 6, 2011

Virtual Issues
Nanoplasmonics and Metamaterials (2011) Optical Materials Express

Citation
Gururaj V. Naik, Jongbum Kim, and Alexandra Boltasseva, "Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]," Opt. Mater. Express 1, 1090-1099 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-6-1090


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science331, 290–291 (2011). [CrossRef] [PubMed]
  2. S. Kehr, Y. Liu, L. Martin, P. Yu, M. Gajek, S. Yang, C. Yang, M. Wenzel, R. Jacob, H. von Ribbeck, M. Helm, X. Zhang, L. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun.2, 249–249 (2011). [CrossRef] [PubMed]
  3. J. Luther, P. Jain, T. Ewers, and A. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10, 361–366 (2011). [CrossRef] [PubMed]
  4. D. Slocum, S. Inampudi, D. Adams, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Arxiv preprint arXiv:1103.6013 (2011).
  5. E. Feigenbaum, K. Diest, and H. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett.10, 2111–2116 (2010). [CrossRef] [PubMed]
  6. D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, J.-S. Roh, J. W. Park, and H.-K. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in “Electron Devices Meeting, 2001. IEDM Technical Digest. International,” (IEEE, 2001), pp. 30.6.1–30.6.4. [CrossRef]
  7. P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4, 795–808 (2010). [CrossRef]
  8. D. Bobb, G. Zhu, M. Mayy, A. Gavrilenko, P. Mead, V. Gavrilenko, and M. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95, 151102 (2009). [CrossRef]
  9. G. Naik and A. Boltasseva, “Ceramic plasmonic components for optical metamaterials,” in “Quantum Electronics and Laser Science Conference” (Optical Society of America, 2011).
  10. G. Zhu, L. Gu, J. Kitur, A. Urbas, J. Vella, and M. Noginov, “Organic materials with negative and controllable electric permittivity,” in “Quantum Electronics and Laser Science Conference” (Optical Society of America, 2011).
  11. G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi (RRL)4, 295–297 (2010). [CrossRef]
  12. N. Ashcroft and N. Mermin, Solid State Physics (Saunders College, 1976).
  13. M. Yoon, S. Lee, H. Park, H. Kim, and M. Jang, “Solid solubility limits of Ga and Al in ZnO,” J. Mater. Sci. Lett.21, 1703–1704 (2002). [CrossRef]
  14. K. Tominaga, H. Manabe, N. Umezu, I. Mori, T. Ushiro, and I. Nakabayashi, “Film properties of ZnO: Al prepared by cosputtering of ZnO:Al and either Zn or Al targets,” J. Vac. Sci. Technol. A15, 1074–1079 (1997). [CrossRef]
  15. K. Ellmer and R. Mientus, “Carrier transport in polycrystalline ITO and ZnO:Al II: the influence of grain barriers and boundaries,” Thin Solid Films516, 5829–5835 (2008). [CrossRef]
  16. D. Horwat, M. Jullien, F. Capon, J. Pierson, J. Andersson, and J. Endrino, “On the deactivation of the dopant and electronic structure in reactively sputtered transparent Al-doped ZnO thin films,” J. Phys. D: Appl. Phys.43, 132003 (2010). [CrossRef]
  17. K. Kim, K. Park, and D. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering,” J. Appl. Phys.81, 7764–7772 (1997). [CrossRef]
  18. D. Kim, M. Park, H. Lee, and G. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci.253, 409–411 (2006). [CrossRef]
  19. A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, “Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition,” Thin Solid Films517, 1478–1481 (2008). [CrossRef]
  20. M. Lee, J. Lim, J. Bang, W. Lee, and J. Myoung, “Effect of the thickness and hydrogen treatment on the properties of Ga-doped ZnO transparent conductive films,” Appl. Surf. Sci.255, 3195–3200 (2008). [CrossRef]
  21. T. Minami, T. Miyata, Y. Ohtani, and T. Kuboi, “Effect of thickness on the stability of transparent conducting impurity-doped ZnO thin films in a high humidity environment,” Phys. Status Solidi (RRL)1, R31–R33 (2007). [CrossRef]
  22. B. Karlsson, R. Shimshock, B. Seraphin, and J. Haygarth, “Optical properties of CVD-coated TiN, ZrN and HfN,” Phys. Scripta25, 775–779 (1982). [CrossRef]
  23. W.-C. Chen, Y.-R. Lin, X.-J. Guo, and S.-T. Wu, “Heteroepitaxial TiN of very low mosaic spread on Al2O3,” Jpn. J. Appl. Phys.42, 208–212 (2003). [CrossRef]
  24. B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A3, 303–307 (1985). [CrossRef]
  25. P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys.90, 4725–4734 (2001). [CrossRef]
  26. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005). [CrossRef] [PubMed]
  27. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686–1686 (2007). [CrossRef] [PubMed]
  28. D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006). [CrossRef] [PubMed]
  29. A. Kildishev and V. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett.33, 43–45 (2008). [CrossRef]
  30. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  31. G. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials5, 1–7 (2011). [CrossRef]
  32. M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011). [CrossRef]
  33. V. Drachev, U. Chettiar, A. Kildishev, H. Yuan, W. Cai, and V. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express16, 1186–1195 (2008). [CrossRef] [PubMed]
  34. G. Naik, J. Schroeder, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible wavelengths,” Arxiv preprint arXiv:1011.4896 (2010).
  35. E. Narimanov and A. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett.95, 041106 (2009). [CrossRef]
  36. H. Kim, J. Horwitz, S. Qadri, and D. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films420, 107–111 (2002). [CrossRef]
  37. B. Lee, T. Kim, and S. Jeong, “Growth and characterization of single crystalline Ga-doped ZnO films using RF magnetron sputtering,” J. Phys. D: Appl. Phys.39, 957–961 (2006). [CrossRef]
  38. A. Gālca, M. Secu, A. Vlad, and J. Pedarnig, “Optical properties of zinc oxide thin films doped with aluminum and lithium,” Thin Solid Films518, 4603–4606 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited