OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 6 — Oct. 1, 2011
  • pp: 1113–1120

Stoichiometric thiol-to-ene ratio dependences of refractive index modulation and shrinkage of volume gratings recorded in photopolymerizable nanoparticle-polymer composites based onstep-growth polymerization

Eiji Hata and Yasuo Tomita  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 6, pp. 1113-1120 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1302 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spectroscopic, photocalorimetric and holographic measurements are conducted to investigate effects of stoichiometric thiol-to-ene ratio on the polymerization dynamics, refractive index modulation, recording sensitivity and polymerization shrinkage of volume gratings recorded in silica nanoparticle-polymer composite films based on step-growth radical addition polymerization. It is found that the polymerization rate of the composite system is maximized at the stoichiometric thiol-ene composition. It is also found that while the refractive index modulation and the recording sensitivity are maximized at the stoichiometric thiol-ene composition, polymerization shrinkage decreases with increasing the thiol monomer fraction. A negative correlation between gel point conversion and shrinkage is observed.

© 2011 OSA

OCIS Codes
(090.2900) Holography : Optical storage materials
(160.5470) Materials : Polymers
(210.2860) Optical data storage : Holographic and volume memories
(210.4810) Optical data storage : Optical storage-recording materials
(160.4236) Materials : Nanomaterials
(160.5335) Materials : Photosensitive materials

ToC Category:
Organics and Polymers

Original Manuscript: August 16, 2011
Revised Manuscript: September 12, 2011
Manuscript Accepted: September 12, 2011
Published: September 15, 2011

Eiji Hata and Yasuo Tomita, "Stoichiometric thiol-to-ene ratio dependences of refractive index modulation and shrinkage of volume gratings recorded in photopolymerizable nanoparticle-polymer composites based onstep-growth polymerization," Opt. Mater. Express 1, 1113-1120 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett.81(22), 4121–4123 (2002). [CrossRef]
  2. N. Suzuki and Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt.43(10), 2125–2129 (2004). [CrossRef] [PubMed]
  3. Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 071103 (2006).
  4. N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express14(26), 12712–12719 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-12712 . [CrossRef] [PubMed]
  5. K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm,” J. Appl. Phys.107(2), 023107 (2010). [CrossRef]
  6. Y. Tomita, “Holographic nanoparticle-photopolymer composites,” in Encyclopedia of Nanoscience and Nanotechnology15, H. S. Nalwa ed., (American Scientific Publishers, Valencia, 2011), pp. 191–205, and references therein.
  7. L. Dhar, M. G. Schnoes, H. E. Katz, A. Hale, M. L. Schilling, and A. L. Harris, “Photopolymers for digital holographic data storage,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., (Springer, Berlin, 2000).
  8. Y. Tomita, T. Nakamura, and A. Tago, “Improved thermal stability of volume holograms recorded in nanoparticle--polymer composite films,” Opt. Lett.33(15), 1750–1752 (2008). [CrossRef] [PubMed]
  9. R. Caputo, A. V. Sukhov, N. V. Tabirian, C. Umeton, and R. F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerisation in a multicomponent medium,” Chem. Phys.271(3), 323–335 (2001). [CrossRef]
  10. Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett.30(8), 839–841 (2005). [CrossRef] [PubMed]
  11. M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellabban, R. A. Rupp, M. Bichler, I. D. Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett.105(12), 123904 (2010). [CrossRef] [PubMed]
  12. J. Klepp, C. Pruner, Y. Tomita, C. Plonka-Spehr, P. Geltenbort, S. Ivanov, G. Manzin, K. H. Andersen, J. Kohlbrecher, M. A. Ellabban, and M. Fally, “Diffraction of slow neutrons by holographic SiO2 nanoparticle-polymer composite gratings,” Phys. Rev. A84(1), 013621 (2011). [CrossRef]
  13. E. Hata, S. Koda, K. Gotoh, and Y. Tomita, “Volume holographic recording in nanoparticle-polymer composites with reduced polymerization shrinkage,” in European Conference on Lasers and Electro-Optics/Quantum Electronics, Technical Digest (CD) (Optical Society of America, 2009), paper CC2.2-THU, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO/Europe-2009-CC2_2 .
  14. E. Hata and Y. Tomita, “Order-of-magnitude polymerization-shrinkage suppression of volume gratings recorded in nanoparticle-polymer composites,” Opt. Lett.35(3), 396–398 (2010). [CrossRef] [PubMed]
  15. Y. Tomita, E. Hata, K. Omura, and S. Yasui, “Low polymerization-shrinkage nanoparticle-polymer composite films based on thiol-ene photopolymerization for holographic data storage,” Proc. SPIE7722, 772229 (2010). [CrossRef]
  16. G. Odian, Principles of Polymerization, 4th ed. (Wiley, New York, 1994), Chap. 2.
  17. H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater.21(12), 1129–1136 (2005). [CrossRef] [PubMed]
  18. E. Hata, K. Mitsube, K. Momose, and Y. Tomita, “Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization,” Opt. Mater. Express1(2), 207–222 (2011), http://www.opticsinfobase.org/ome/abstract.cfm?uri=ome-1-2-207 . [CrossRef]
  19. T. J. White, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “Polymerization kinetics and monomer functionality effects in thiol-ene polymer dispersed liquid crystals,” Macromolecules40(4), 1112–1120 (2007). [CrossRef]
  20. N. B. Cramer, S. K. Reddy, A. K. O’Brien, and C. N. Bowman, “Thiol-ene photopolymerization mechanism and rate limiting step changes for various vinyl functional group chemistries,” Macromolecules36(21), 7964–7969 (2003). [CrossRef]
  21. C. E. Hoyle, T. Y. Lee, and T. Roper, “Thiol-enes: chemistry of the past with promise for the future,” J. Polym. Sci., Part A: Polym. Chem.42(21), 5301–5338 (2004). [CrossRef]
  22. L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer (Guildf.)47(12), 4411–4420 (2006). [CrossRef]
  23. T.-M. G. Chu and J. W. Halloran, “Curing of highly loaded ceramic suspensions in acrylates,” J. Am. Chem. Soc.83, 2375–2380 (2000).
  24. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2947 (1969).
  25. L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett.73(10), 1337–1339 (1998). [CrossRef]
  26. M. Moothanchery, I. Naydenova, and V. Toal, “Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film,” Opt. Express19(14), 13395–13404 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13395 . [CrossRef] [PubMed]
  27. B.-S. Chiou and S. A. Khan, “Real-time FTIR and in situ rheological studies on the UV curing kinetics of thiol-ene polymers,” Macromolecules30(23), 7322–7328 (1997). [CrossRef]
  28. N. B. Cramer, S. K. Reddy, H. Lu, T. Cross, R. Raj, and C. N. Bowman, “Thiol-ene photopolymerization of polymer-derived ceramic precursors,” J. Polym. Sci. A Polym. Chem.42(7), 1752–1757 (2004). [CrossRef]
  29. J. A. Carioscia, H. Lu, J. W. Stanbury, and C. N. Bowman, “Thiol-ene oligomers as dental restorative materials,” Dent. Mater.21(12), 1137–1143 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited