OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 6 — Oct. 1, 2011
  • pp: 1121–1126

Tensile-strained germanium-on-insulator substrate fabrication for silicon-compatible optoelectronics

J. Raja Jain, Dany-Sebastien Ly-Gagnon, Krishna C. Balram, Justin S. White, Mark L. Brongersma, David A. B. Miller, and Roger T. Howe  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 6, pp. 1121-1126 (2011)
http://dx.doi.org/10.1364/OME.1.001121


View Full Text Article

Enhanced HTML    Acrobat PDF (2273 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method to fabricate tensile-strained germanium-on-insulator (GOI) substrates using heteroepitaxy and layer transfer techniques. The motivation is to obtain a high-quality wafer-scale GOI platform suitable for silicon-compatible optoelectronic device fabrication. Crystal quality is assessed using X-Ray Diffraction (XRD) and Transmission Electron Microscopy. A biaxial tensile film strain of 0.16% is verified by XRD. Suitability for device manufacturing is demonstrated through fabrication and characterization of metal–semiconductor–metal photodetectors that exhibit photoresponse beyond 1.55 μm. The substrate fabrication process is compatible with complementary metal–oxide–semiconductor manufacturing and represents a potential route to wafer-scale integration of silicon-compatible optoelectronics.

© 2011 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(130.0250) Integrated optics : Optoelectronics
(160.4670) Materials : Optical materials

ToC Category:
Semiconductors

History
Original Manuscript: August 4, 2011
Revised Manuscript: September 10, 2011
Manuscript Accepted: September 12, 2011
Published: September 16, 2011

Citation
J. Raja Jain, Dany-Sebastien Ly-Gagnon, Krishna C. Balram, Justin S. White, Mark L. Brongersma, David A. B. Miller, and Roger T. Howe, "Tensile-strained germanium-on-insulator substrate fabrication for silicon-compatible optoelectronics," Opt. Mater. Express 1, 1121-1126 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-6-1121


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. I. Dosunmu, D. D. Cannon, M. K. Emsley, B. Ghyselen, J. Liu, L. C. Kimerling, and M. S. Ünlü, “Resonant cavity enhanced Ge photodetectors for 1550 nm operation on reflecting Si substrates,” IEEE J. Sel. Top. Quantum Electron.10(4), 694–701 (2004). [CrossRef]
  2. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express17(10), 7901–7906 (2009). [CrossRef] [PubMed]
  3. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010). [CrossRef] [PubMed]
  4. M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys.80(4), 2234–2252 (1996). [CrossRef]
  5. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Toward a germanium laser for integrated silicon photonics,” IEEE J. Sel. Top. Quantum Electron.16(1), 124–131 (2010). [CrossRef]
  6. J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett.87(1), 011110 (2005). [CrossRef]
  7. T. Tezuka, N. Sugiyama, and S. Takagi, “Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction,” Appl. Phys. Lett.79(12), 1798–1800 (2001). [CrossRef]
  8. T. Tezuka, N. Sugiyama, T. Mizuno, M. Suzuki, and S. Takagi, “A novel fabrication technique of ultrathin and relaxed SiGe buffer layers with high Ge fraction for sub-100 nm strained silicon-on-insulator MOSFETs,” Jpn. J. Appl. Phys.40(Part 1, No. 4B), 2866–2874 (2001). [CrossRef]
  9. J. F. Damlencourt, B. Vincent, P. Rivallin, P. Holliger, D. Rouchon, E. Nolot, C. Licitra, Y. Morand, L. Clavelier, and T. Billon, “Fabrication of SiGe-on-insulator by improved Ge condensation technique,” in Proceedings of Third International SiGe Technology and Device Meeting (2006).
  10. B. Vincent, J.-F. Damlencourt, P. Rivallin, E. Nolot, C. Licitra, Y. Morand, and L. Clavelier, “Fabrication of SiGe-on-insulator substrates by a condensation technique: An experimental and modelling study,” Semicond. Sci. Technol.22(3), 237–244 (2007). [CrossRef]
  11. C. Deguet, L. Sanchez, T. Akatsu, F. Allibert, J. Dechamp, F. Madeira, F. Mazen, A. Tauzin, V. Loup, C. Richtarch, D. Mercier, T. Signamarcheix, F. Letertre, B. Depuydt, and N. Kernevez, “Fabrication and characterisation of 200 mm germanium-on-insulator (GeOI) substrates made from bulk germanium,” Electron. Lett.42(7), 415–417 (2006). [CrossRef]
  12. M. Takai, T. Tanigawa, K. Gamo, and S. Namba, “Single crystalline germanium island on insulator by zone melting recrystallization,” Jpn. J. Appl. Phys.22(Part 2, 10), L624–L626 (1983). [CrossRef]
  13. Y. Liu, M. D. Deal, and J. D. Plummer, “High-quality single-crystal Ge on insulator by liquid-phase epitaxy on Si substrates,” Appl. Phys. Lett.84(14), 2563–2565 (2004). [CrossRef]
  14. Y. Liu, M. D. Deal, and J. D. Plummer, “Rapid melt growth of germanium crystals with self-aligned microcrucibles on Si substrates,” J. Electrochem. Soc.152(8), G688–G693 (2005). [CrossRef]
  15. A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality,” Appl. Phys. Lett.85(14), 2815–2817 (2004). [CrossRef]
  16. J. Hydrick, J. Park, J. Bai, C. Major, M. Curtin, J. G. Fiorenza, M. Carroll, and A. Lochtefeld, “Chemical mechanical polishing of epitaxial germanium on SiO2-patterned Si(001) substrates,” Trans. Electrochem. Soc.16(10), 237–248 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited