OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 6 — Oct. 1, 2011
  • pp: 1141–1149

Reactive molten core fabrication of silicon optical fiber

S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, R. Rice, and J. Ballato  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 6, pp. 1141-1149 (2011)
http://dx.doi.org/10.1364/OME.1.001141


View Full Text Article

Enhanced HTML    Acrobat PDF (1039 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Silicon optical fibers fabricated using the molten core method possess high concentrations of oxygen in the core [Opt. Express 16, 18675 (2008)] due to dissolution of the cladding glass by the core melt. The presence of oxygen in the core can influence scattering, hence propagation losses, as well as limit the performance of the fiber. Accordingly, it is necessary to achieve oxygen-free silicon optical fibers prior to further optimization. In this work, silicon carbide (SiC) is added to the silicon (Si) core to provide an in situ reactive getter of oxygen during the draw process. Scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), and powder x-ray diffraction (P-XRD) are used to verify that the glass-clad silicon optical fibers possess very low oxygen concentrations and that the SiC is consumed fully during the reactive molten core fabrication. Optical measurements indicated a reduction in light scattering out of the silicon core as expected. However, the measured attenuation of about 10 dB/cm, which is consistent with existing low-oxygen-content silicon fibers, implies that scattering might not be the dominant source of loss in these molten core-derived silicon fibers. More generally, this work shows that the high temperature processing of optical fibers can be an asset to drive chemical reactions rather than be limited by them.

© 2011 OSA

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2310) Fiber optics and optical communications : Fiber optics
(160.2290) Materials : Fiber materials
(160.4760) Materials : Optical properties
(160.6000) Materials : Semiconductor materials

ToC Category:
Materials for Fiber Optics

History
Original Manuscript: July 19, 2011
Revised Manuscript: September 8, 2011
Manuscript Accepted: September 15, 2011
Published: September 23, 2011

Citation
S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, R. Rice, and J. Ballato, "Reactive molten core fabrication of silicon optical fiber," Opt. Mater. Express 1, 1141-1149 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-6-1141


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater.6(5), 336–347 (2007). [CrossRef] [PubMed]
  2. N. K. Goel, R. H. Stolen, S. Morgan, J.-K. Kim, D. Kominsky, and G. Pickrell, “Core-suction technique for the fabrication of optical fiber preforms,” Opt. Lett.31(4), 438–440 (2006). [CrossRef] [PubMed]
  3. N. Da, L. Wondraczek, M. Schmidt, N. Granzow, and P. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010). [CrossRef]
  4. J. Ballato, T. Hawkins, P. Foy, S. Morris, N. K. Hon, B. Jalali, and R. Rice, “Silica-clad crystalline germanium core optical fibers,” Opt. Lett.36(5), 687–688 (2011). [CrossRef] [PubMed]
  5. N. Healy, J. R. Sparks, M. N. Petrovich, P. J. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon microstructured fiber with robust dual mode guidance,” Opt. Express17(20), 18076–18082 (2009). [CrossRef] [PubMed]
  6. D. Won, M. Ramirez, H. Kang, V. Gopalan, N. Baril, J. Calkins, J. Badding, and P. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007). [CrossRef]
  7. C. Finlayson, A. Amezcua-Correa, P. Sazio, N. Baril, and J. Badding, “Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers,” Appl. Phys. Lett.90(13), 132110 (2007). [CrossRef]
  8. J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. (Deerfield Beach Fla.)23(14), 1647–1651 (2011). [CrossRef] [PubMed]
  9. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express16(23), 18675–18683 (2008). [CrossRef] [PubMed]
  10. J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express17(10), 8029–8035 (2009). [CrossRef] [PubMed]
  11. J. Ballato, T. Hawkins, P. Foy, C. McMillen, L. Burka, J. Reppert, R. Podila, A. M. Rao, and R. R. Rice, “Binary III-V semiconductor core optical fiber,” Opt. Express18(5), 4972–4979 (2010). [CrossRef] [PubMed]
  12. J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol.16(6), 399–408 (2010). [CrossRef]
  13. N. Orf, O. Shapira, F. Sorin, S. Danto, M. Baldo, J. Joannopoulos, and Y. Fink, “Fiber draw synthesis,” Proc. Natl. Acad. Sci. U.S.A.108(12), 4743–4747 (2011). [CrossRef]
  14. E. Snitzer and R. Tumminelli, “SiO2-clad fibers with selectively volatilized soft-glass cores,” Opt. Lett.14(14), 757–759 (1989). [CrossRef] [PubMed]
  15. J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt.34(30), 6848–6854 (1995). [CrossRef] [PubMed]
  16. S. Hu, “Dislocation pinning effect of oxygen atoms in silicon,” Appl. Phys. Lett.31(2), 53–55 (1977). [CrossRef]
  17. L. Lagonigro, N. Healy, J. Sparks, N. Baril, P. Sazio, J. Badding, and A. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett.96(4), 041105 (2010). [CrossRef]
  18. N. Healy, L. Lagonigro, J. R. Sparks, S. Boden, P. J. Sazio, J. V. Badding, and A. C. Peacock, “Polycrystalline silicon optical fibers with atomically smooth surfaces,” Opt. Lett.36(13), 2480–2482 (2011). [CrossRef] [PubMed]
  19. G. Ervin, “Oxidation behavior of silicon carbide,” J. Am. Ceram. Soc.41(9), 347–352 (1958). [CrossRef]
  20. W. Pultz and W. Hertl, “SiO2 + SiC reaction at elevated temperatures. Part 1— Kinetics and mechanism,” Trans. Faraday Soc.62, 2499–2504 (1966). [CrossRef]
  21. J. Weiss, H. Lukas, J. Lorenz, G. Petzow, and H. Krieg, “Calculations of heterogeneous phase equilibria in oxide-nitride systems. I. The Quaternary System C–Si–N–O,” Calphad5(2), 125–140 (1981). [CrossRef]
  22. M. Hakamada, Y. Fukunaka, T. Oishi, T. Nishiyama, and H. Kusuda, “Carbothermic reduction of amorphous silica refined from diatomaceous earth,” Metall. Mater. Trans., B, Process Metall. Mater. Proc. Sci.41(2), 350–358 (2010). [CrossRef]
  23. S. Nakamura and T. Hibiya, “Thermophysical properties data on molten semiconductors,” Int. J. Thermophys.13(6), 1061–1084 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited