OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 6 — Oct. 1, 2011
  • pp: 1150–1158

Observation of O2 inside voids formed in GeO2 glass by tightly-focused fs-laser pulses

Lena Bressel, Dominique de Ligny, Eugene G. Gamaly, Andrei V. Rode, and Saulius Juodkazis  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 6, pp. 1150-1158 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (881 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Unusual generation of molecular oxygen confined in a void inside the bulk of GeO2 glass is observed with the Raman spectroscopy. The voids are formed by single tightly-focussed femtosecond laser pulses, converting a host glass material into a high temperature plasma, which explodes creating a void and inducing unexpected phase transformations. The intensity of the 1556 cm−1 Raman line, that is a signature of molecular oxygen, increases with pulse energy. The mechanism of O2 formation and material synthesis in plasma is presented and its relevance to fundamental problems of matter at high pressure and temperature conditions and subject to geo-physical sciences is discussed.

© 2011 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3440) Lasers and laser optics : Laser-induced breakdown
(160.2750) Materials : Glass and other amorphous materials
(350.3850) Other areas of optics : Materials processing
(160.1245) Materials : Artificially engineered materials

ToC Category:
Artificially Engineered Structures

Original Manuscript: August 10, 2011
Revised Manuscript: September 11, 2011
Manuscript Accepted: September 20, 2011
Published: September 28, 2011

Lena Bressel, Dominique de Ligny, Eugene G. Gamaly, Andrei V. Rode, and Saulius Juodkazis, "Observation of O2 inside voids formed in GeO2 glass by tightly-focused fs-laser pulses," Opt. Mater. Express 1, 1150-1158 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Beresna, M. Gecevicius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98, 201101 (2011). [CrossRef]
  2. E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photo-polymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett.97, 211108 (2010). [CrossRef]
  3. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett.27, 1938–1940 (2002). [CrossRef]
  4. S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16, 9443–9458 (2008). [CrossRef] [PubMed]
  5. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B97, 251–255 (2009). [CrossRef]
  6. D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express13, 5939–5946 (2005). [CrossRef] [PubMed]
  7. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009). [CrossRef]
  8. D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids354, 416–424 (2009). [CrossRef]
  9. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater.1, 217–224 (2002). [CrossRef]
  10. M. Farsari and B. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics3, 450–452 (2009). [CrossRef]
  11. M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010). [CrossRef]
  12. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010). [CrossRef] [PubMed]
  13. M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011). [CrossRef] [PubMed]
  14. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011). [CrossRef]
  15. W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2, 99–104 (2008). [CrossRef]
  16. B. Poumellec, M. Lancry, J. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express16, 18354–18361 (2008). [CrossRef] [PubMed]
  17. Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express19, 5725–5734 (2011). [CrossRef] [PubMed]
  18. A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nature Commun.2, 445 (2011). [CrossRef]
  19. S. R. Desai, H. Wu, C. M. Rohlfing, and L.-S. Wanga, “A study of the structure and bonding of small aluminum oxide clusters by photoelectron spectroscopy: AlxOy2−(x=1−2,y=1−5),” J. Chem. Phys.106, 1309–1317 (1997). [CrossRef]
  20. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996). [CrossRef] [PubMed]
  21. S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010). [CrossRef]
  22. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Solids357, 2637–2640 (2011). [CrossRef]
  23. T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Sol.353, 4762–4766 (2007). [CrossRef]
  24. E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006). [CrossRef]
  25. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73, 214101 (2006). [CrossRef]
  26. E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett.103, 103903 (2009). [CrossRef] [PubMed]
  27. A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003). [CrossRef]
  28. S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett.5, S198–S200 (2007).
  29. R. P. Drake, “High-energy-density physics,” Phys. Today63, 28–33 (2010). [CrossRef]
  30. E. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71, 882–884 (1997). [CrossRef]
  31. S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids355, 1160–1162 (2009). [CrossRef]
  32. P. F. McMillan, “Pressing on: the legacy of P. W. Bridgman,” Nat. Mater.4, 19–25 (2005). [CrossRef]
  33. Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature458, 182–185 (2009). [CrossRef] [PubMed]
  34. D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett102, 075503 (2009). [CrossRef] [PubMed]
  35. Y. A. Freiman and H. J. Jodl, “Solid oxygen,” Phys. Rep.401, 1–228 (2004). [CrossRef]
  36. J. M. Léger, J. Haines, M. Schmidt, J. P. Petitet, A. S. Pereira, and J. A. H. da Jornada, “Discovery of hardest known oxide,” Nature383, 401 (1996). [CrossRef]
  37. C. J. Pickard and R. J. Needs, “Aluminium at terapascal pressures,” Nat. Mater.9, 624–627 (2010). [CrossRef] [PubMed]
  38. T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter19, 365211 (2007). [CrossRef]
  39. J. A. Moriarty and A. K. McMahan, “High-pressure structural phase transitions in Na, Mg, and Al,” Phys. Rev. Lett.48, 809–812 (1982). [CrossRef]
  40. P. F. McMillan, “New materials from high-pressure experiments,” Nat. Mater.1, 19–25 (2002). [CrossRef]
  41. T. Ahrens, “Dynamic compression of Earth materials,” Science207, 1035–1041 (1980). [CrossRef] [PubMed]
  42. W. W. Anderson, B. Svendsen, and T. J. Ahrens, “Phase relations in iron-rich systems and implications for the Earth’s core,” Phys. Earth Planetary Inter.55, 208–220 (1989). [CrossRef]
  43. S. Ono, A. R. Oganov, T. Koyama, and H. Shimizu, “Stability and compressibility of high-pressure phase of Al2O3 up to 200 GPa: implications for electrical conductivity at the base of the lower mantle,” Earth Planet. Sci. Lett.246, 326–335 (2006). [CrossRef]
  44. A. R. Oganov and S. Ono, “The high-pressure phase of alumina and implications for Earth’s D” layer,” Proc. Natl. Acad. Sci.102, 10828–10831 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited