OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 7 — Nov. 1, 2011
  • pp: 1165–1177

Fabrication of high resistivity cold-implanted InGaAsP photoconductors for efficient pulsed terahertz devices

André Fekecs, Maxime Bernier, Denis Morris, Martin Chicoine, François Schiettekatte, Paul Charette, and Richard Arès  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 7, pp. 1165-1177 (2011)
http://dx.doi.org/10.1364/OME.1.001165


View Full Text Article

Enhanced HTML    Acrobat PDF (1107 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A multiple-energy, high fluence, MeV Fe ion implantation process was applied at 83 K to heavily damage a low band gap (0.79 eV) epitaxial InGaAsP layer. Optimal rapid thermal annealing conditions were found and produced a fast photoconductor with high resistivity (up to 2500 Ωcm) and Hall mobility around 400 cm2V−1s−1. Short photocarrier trapping times (0.3 ps – 3 ps) were observed via transient differential reflectivity measurements. Furthermore, photoconductive terahertz devices with coplanar electrodes were fabricated and validated. Under pulsed excitation with a 1550 nm femtosecond fiber laser source, antennas based on Fe-implanted InGaAsP are able to emit broadband radiation exceeding 2 THz. Given such specifications, this new material qualifies as a worthy candidate for an integration into optical terahertz spectrometer designs.

© 2011 OSA

OCIS Codes
(160.5140) Materials : Photoconductive materials
(160.6000) Materials : Semiconductor materials
(320.7080) Ultrafast optics : Ultrafast devices
(320.7100) Ultrafast optics : Ultrafast measurements
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Semiconductors

History
Original Manuscript: September 2, 2011
Revised Manuscript: September 27, 2011
Manuscript Accepted: September 29, 2011
Published: October 5, 2011

Citation
André Fekecs, Maxime Bernier, Denis Morris, Martin Chicoine, François Schiettekatte, Paul Charette, and Richard Arès, "Fabrication of high resistivity cold-implanted InGaAsP photoconductors for efficient pulsed terahertz devices," Opt. Mater. Express 1, 1165-1177 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-7-1165


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Kawase, Y. Ogawa, and Y. Watanabe, “Non-destructive terahertz imaging of illicit drugs using spectral finger-prints,” Opt. Express11, 2549–2554 (2003). [CrossRef] [PubMed]
  2. M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett.434, 227–230 (2007). [CrossRef]
  3. A. H. Saleck, M. Tanimoto, S. P. Belov, T. Klaus, and G. Winnewisser, “Millimetre- and submillimetre-wave rotational spectra of rare hydrogen sulfide isotopomers,” J. Mol. Spectros.171, 481–493 (1995). [CrossRef]
  4. J.-F. Allard, A. Cornet, C. Debacq, M. Meurens, D. Houde, and D. Morris, “Improved detection sensitivity of D-mannitol crystalline phase content using differential spectral phase shift terahertz spectroscopy measurements,” Opt. Express19, 4644–4652 (2011). [CrossRef] [PubMed]
  5. M. C. Kemp, P. F. Taday, J.A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE5070, 44–52 (2003). [CrossRef]
  6. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett.20, 1716–1718 (1995). [CrossRef] [PubMed]
  7. A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M.A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol.47, R67–R84 (2002). [CrossRef] [PubMed]
  8. R. M. Woodward, P. Wallace, D. D. Arnone, and E. H. Linfield, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys.29, 257–261 (2003). [CrossRef]
  9. P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S Hoffmann, M. Hofman, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histopathological samples,” Phys. Med. Biol.47, 3875–3884 (2002). [CrossRef] [PubMed]
  10. R. Pieciewicz, T. Kleine-Ostmann, N. Krumbholtz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag.49(6), 24–39 (2007). [CrossRef]
  11. E. Perret, M. Hamdi, A. Vena, F. Garet, M. Bernier, L. Duvillaret, and S. Tedjini, “RF and THz identification using a new generation of chipless RFID tags,” Radioengineering20, 380–386 (2011).
  12. D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron.8, 1–66 (2004). [CrossRef]
  13. A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett.90, 101119 (2007). [CrossRef]
  14. D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55 μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett.86, 051908 (2005). [CrossRef]
  15. C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 μm excitation,” Appl. Phys. Lett.96, 194104 (2010). [CrossRef]
  16. H. Kuenzel, J. Boettcher, K. Biermann, H. Hensel, H. Roehle, and B. Sartorius, “Low temperature MBE-grown In(Ga,Al)As/InP structures for 1.55 μm THz photoconductive antenna applications,” in 20th International Conference on Indium Phosphide and Related Materials, IPRM 2008 (IEEE, New York, 2008), pp. 1–4. [CrossRef]
  17. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett.86, 051104 (2005). [CrossRef]
  18. N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett.87, 193510 (2005). [CrossRef]
  19. H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, “Material properties of Ga0.47In0.53 As grown on InP by low-temperature molecular beam epitaxy,” Appl. Phys. Lett.61, 1347–1349 (1992). [CrossRef]
  20. L. Qian, S. D. Benjamin, P. W. E. Smith, B. J. Robinson, and D. A. Thomson, “Subpicosecond carrier lifetimes in beryllium-doped InGaAsP grown by He-plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.71, 1513–1515 (1997). [CrossRef]
  21. F. E. Doany, D. Grischkowsky, and C.-C. Chi, “Carrier lifetime versus ion implantation dose in silicon on sapphire,” Appl. Phys. Lett.50, 460–462 (1987). [CrossRef]
  22. C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevicius, “Ion-implanted In0.53Ga0.47As for ultrafast optoelectronic applications,” Appl. Phys. Lett.82, 3913–3915 (2003). [CrossRef]
  23. S. E. Ralph, Y. Chen, J. Woodall, and D. McInturff, “Subpicosecond photoconductivity of In0.53Ga0.47As: Inter-valley scattering rates observed via THz spectroscopy,” Phys. Rev. B54, 5568–5573 (1996). [CrossRef]
  24. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, Series: Stopping and Ranges of Ions in Matter (Pergamon Press, 1984), Vol. 1.
  25. P. Too, S. Ahmed, R. Jakiela, A. Barcz, A. Kozanecki, B. J. Sealy, and R. Gwilliam, “Implant isolation of both n-type InP and InGaAs by iron irradiation: Effect of post-implant annealing temperature,” in Proceedings of the 11th IEEE Int. Symp. on Elec. Dev. for Micro. and Opto. Appl., (IEEE, New York, 2003), pp. 18–23.
  26. S. Marcinkevicius, A. Gaarder, C. Carmody, H. H. Tan, and C. Jagadish, “Ultrafast carrier dynamics in highly resistive InP and InGaAs produced by ion implantation,” Proc. SPIE5352, 299–309 (2004). [CrossRef]
  27. S. C. Subramaniam and A. A. Rezazadeh, “The effects of thermal annealing on iron bombarded InP/InGaAs multilayer structures,” Nucl. Instrum. Methods Phys. Res. B248, 59–66 (2006). [CrossRef]
  28. E. Wendler, “Mechanisms of damage formation in semiconductors,” Nucl. Instrum. Methods Phys. Res. B267, 2680–2689 (2009). [CrossRef]
  29. F. R. Bacher, J. S. Blakemore, J. T. Ebner, and J. R. Arthur, “Optical-absorption coefficient of In1−xGaxAs/InP,” Phys. Rev. B37, 2551–2557 (1988). [CrossRef]
  30. T. Korn, A. Franke-Wiekhorst, S. Schnull, and I. Wilke, “Characterization of nanometer As-clusters in low-temperature grown GaAs by transient reflectivity measurements,” J. Appl. Phys.91, 2333–2336 (2002). [CrossRef]
  31. S. S. Prabhu and A. S. Vengurlekar, “Dynamics of the pump-probe reflectivity spectra in GaAs and GaN,” J. Appl. Phys.95, 7803–7812 (2004). [CrossRef]
  32. V. Ortiz, J. Nagle, J.-F. Lampin, E. Péronne, and A. Alexandrou, “Low-temperature-grown GaAs: Modeling of transient reflectivity experiments,” J. Appl. Phys.102, 043515 (2007). [CrossRef]
  33. S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: The role of electrical and optical carrier injection,” Appl. Phys. Lett.56, 1972–1975 (1991). [CrossRef]
  34. M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett.85, 3974–3976 (2004). [CrossRef]
  35. A. Madan and M. P. Shaw, The Physics and Applications of Amorphous Semiconductors (Academic Press, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited