OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 7 — Nov. 1, 2011
  • pp: 1178–1184

2D infrared self-focusing in bulk photorefractive SBN

Delphine Wolfersberger and Denis Tranca  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 7, pp. 1178-1184 (2011)
http://dx.doi.org/10.1364/OME.1.001178


View Full Text Article

Enhanced HTML    Acrobat PDF (748 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate the possibility of photorefractive 2D self-focusing in bulk Cerium doped Strontium Barium Niobate (SBN:Ce) directly at telecommunications wavelengths (1.06 μm and 1.55 μm). Although the electro-optic coefficient of SBN is smaller at infrared wavelengths, 2D infrared self-trapping is observed and analyzed versus different parameters such as the laser beam intensity, the external applied electric field and time.

© 2011 OSA

OCIS Codes
(190.5330) Nonlinear optics : Photorefractive optics
(190.5940) Nonlinear optics : Self-action effects
(260.3060) Physical optics : Infrared
(260.5950) Physical optics : Self-focusing

ToC Category:
Nonlinear Optical Materials

History
Original Manuscript: September 6, 2011
Revised Manuscript: September 29, 2011
Manuscript Accepted: September 29, 2011
Published: October 5, 2011

Citation
Delphine Wolfersberger and Denis Tranca, "2D infrared self-focusing in bulk photorefractive SBN," Opt. Mater. Express 1, 1178-1184 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-7-1178


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science286(5444), 1518–1523 (1999). [CrossRef] [PubMed]
  2. M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, “Waveguides induced by photorefractive screening solitons,” J. Opt. Soc. Am. B14(11), 3091–3101 (1997). [CrossRef]
  3. S. Lan, E. DelRe, Z. Chen, M. Shih, and M. Segev, “Directional coupler with soliton-induced waveguides,” Opt. Lett.24(7), 475–477 (1999). [CrossRef]
  4. J. Petter and C. Denz, “Guiding and dividing waves with photorefractive solitons,” Opt. Commun.188, 55–61 (2001). [CrossRef]
  5. E. DelRe, M. Tamburini, and A. J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt. Lett.25(13), 963–965 (2000). [CrossRef]
  6. M. Tiemann, J. Petter, and T. Tschudi, “Infrared guiding behavior in a 1 X N spatial soliton switch,” Opt. Commun.281, 175–180 (2008). [CrossRef]
  7. D. Kip, M. Wesner, V. Shandarov, and P. Moretti, “Observation of bright spatial photorefractive solitons in a planar strontium barium niobate waveguide,” Opt. Lett.23(12), 921–923 (1998). [CrossRef]
  8. M. Wesner, C. Herden, D. Kip, E. Krätzig, and P. Moretti, “Photorefractive steady state solitons up to telecommunication wavelengths in planar SBN waveguides,” Opt. Commun.188, 69–76 (2001). [CrossRef]
  9. M. Wesner, C. Herden, R. Pankrath, D. Kip, and M. Moretti, “Temporal development of photorefractive solitons up to telecommunication wavelengths in SBN,” Phys. Rev. E64, 036613 (2001). [CrossRef]
  10. M. Chauvet, S. Hawkins, G. Salamo, M. Segev, D. Bliss, and G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe,” Opt. Lett.21(17), 1333–1335 (1996). [CrossRef] [PubMed]
  11. M. Chauvet, S. Hawkins, G. Salamo, M. Segev, D. Bliss, and G. Bryant, “Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths,” Appl. Phys. Lett.70(19), 2499–2501 (1997). [CrossRef]
  12. R. Uzdin, M. Segev, and G. Salamo, “Theory of self-focusing in photorefractive InP,” Opt. Lett.26(20), 1547–1549 (2001). [CrossRef]
  13. N. Fressengeas, N. Khelfaoui, C. Dan, D. Wolfersberger, H. Leblond, and M. Chauvet, “Roles of resonance and dark irradiance for infrared photorefractive self-focusing and solitons in bipolar InP:Fe,” Phys. Rev. A75(6), 063834 (2007). [CrossRef]
  14. D. Wolfersberger, N. Khelfaoui, C. Dan, N. Fressengeas, and H. Leblond, “Fast photorefractive self-focusing in InP:Fe semiconductor at infrared wavelengths,” Appl. Phys. Lett.92(2), 021106 (2008). [CrossRef]
  15. M. Alonzo, C. Dan, D. Wolfersberger, and E. Fazio, “Coherent collisions of infrared self-trapped beams in photorefractive InP:Fe,” Appl. Phys. Lett.96(12), 121111 (2010). [CrossRef]
  16. T. Schwartz, Y. Ganor, T. Carmon, R. Uzdin, S. Schwartz, M. Segev, and U. El-Hanany, “Photorefractive solitons and light-induced resonance control in semiconductor CdZnTe,” Opt. Lett.27(14), 1229–1231 (2002). [CrossRef]
  17. C. Dan, D. Wolfersberger, N. Fressengeas, G. Montemezzani, and A. Grabar, “Near infrared photorefractive self focusing in Sn2P2S6:Te crystals,” Opt. Express15(20), 12777–12782 (2007). [CrossRef] [PubMed]
  18. G. Montemezzani, C. Dan, M. Gorram, N. Fressengeas, D. Wolfersberger, F. Juvalta, R. Mosimann, M. Jazbinsek, P. Gunter, and A. A. Grabar, “Real-time photoinduced waveguides in Sn2P2S6 bulk crystals with visible or near infrared light,” in Controlling Light with Light: Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More, OSA Technical Digest (CD) (Optical Society of America, 2007), paper TuB3. [PubMed]
  19. M. Klotz, H. Meng, G. J. Salamo, M. Segev, and S. R. Montgomery, “Fixing the photorefractive soliton,” Opt. Lett.24(2), 77–79 (1999). [CrossRef]
  20. M. Wesner, C. Herden, and D. Kip, “Electrical fixing of waveguide channels in strontium–barium niobate crystals,” Appl. Phys. B72, 733–736 (2001).
  21. M. F. Shih, P. Leach, M. Segev, M. H. Garret, G. Salamo, and G. C. Valley, “Incoherent collisions between two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett.21(5), 324–326 (1996). [CrossRef] [PubMed]
  22. N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, “Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,” Opt. Commun.145, 393–400 (1998). [CrossRef]
  23. N. Fressengeas, J. Maufoy, and G. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E54(6), 6866–6875 (1996). [CrossRef]
  24. N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics22, 949–960 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited