OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 7 — Nov. 1, 2011
  • pp: 1216–1223

Experimental confirmation of strong fluorescence enhancement using one-dimensional GaP/SiO2 photonic band gap structure

Jian Gao, Andrew M. Sarangan, and Qiwen Zhan  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 7, pp. 1216-1223 (2011)
http://dx.doi.org/10.1364/OME.1.001216


View Full Text Article

Enhanced HTML    Acrobat PDF (3692 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we report the experimental confirmation of the fluorescence enhancement effect using a one-dimensional photonic band gap (1D PBG) structure. This 1D PBG structure consists of periodic multilayer thin films with gallium phosphide (GaP) and silicon dioxide (SiO2) as the alternating high and low index materials. Strong evanescent field enhancement can be generated at the last interface due to the combination of total internal reflection and photonic crystal resonance for the excitation wavelength. In addition, the 1D PBG structure is designed as an omnidirectional reflector for the red-shifted fluorescent signal emitted from the surface bounded molecules. This omnidirectional reflection function helps to improve the collection efficiency of the objective lens and further increase the detected fluorescent signal. Compared with the commonly used bare glass substrate, an average enhancement factor of 69 times has been experimentally verified with quantum dots as the fluorescent markers. This fluorescence enhancer may find broad applications in single molecular optical sensing and imaging.

© 2011 OSA

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(240.6690) Optics at surfaces : Surface waves
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Photonic Crystals

History
Original Manuscript: September 15, 2011
Revised Manuscript: October 9, 2011
Manuscript Accepted: October 11, 2011
Published: October 12, 2011

Citation
Jian Gao, Andrew M. Sarangan, and Qiwen Zhan, "Experimental confirmation of strong fluorescence enhancement using one-dimensional GaP/SiO2 photonic band gap structure," Opt. Mater. Express 1, 1216-1223 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-7-1216


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007). [CrossRef] [PubMed]
  2. P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004). [CrossRef] [PubMed]
  3. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett.26(24), 1972–1974 (2001). [CrossRef] [PubMed]
  4. C. C. Fu, G. Ossato, M. Long, M. A. Digman, A. Gopinathan, L. P. Lee, E. Gratton, and M. Khine, “Bimetallic nanopetals for thousand-fold fluorescence enhancements,” Appl. Phys. Lett.97(20), 203101 (2010). [CrossRef]
  5. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009). [CrossRef]
  6. Y. Liu, S. Wang, Y. S. Park, X. Yin, and X. Zhang, “Fluorescence enhancement by a two-dimensional dielectric annular Bragg resonant cavity,” Opt. Express18(24), 25029–25034 (2010). [CrossRef] [PubMed]
  7. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007). [CrossRef] [PubMed]
  8. L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express18(4), 3693–3699 (2010). [CrossRef] [PubMed]
  9. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006). [CrossRef] [PubMed]
  10. J. Enderlein, “Fluorescence detection of single molecules near a solution/glass interface – an electrodynamic analysis,” Chem. Phys. Lett.308(3-4), 263–266 (1999). [CrossRef]
  11. L. Polerecký, J. Hamrle, and B. D. MacCraith, “Theory of the radiation of dipoles placed within a multilayer system,” Appl. Opt.39(22), 3968–3977 (2000). [CrossRef] [PubMed]
  12. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990). [CrossRef]
  13. Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, “High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots,” Appl. Phys. Lett.87(7), 071905 (2005). [CrossRef]
  14. J. Enderlein, T. Ruckstuhl, and S. Seeger, “Highly efficient optical detection of surface-generated fluorescence,” Appl. Opt.38(4), 724–732 (1999). [CrossRef] [PubMed]
  15. A. Pokhriyal, M. Lu, V. Chaudhery, C. S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express18(24), 24793–24808 (2010). [CrossRef] [PubMed]
  16. J. Y. Ye and M. Ishikawa, “Enhancing fluorescence detection with a photonic crystal structure in a total-internal-reflection configuration,” Opt. Lett.33(15), 1729–1731 (2008). [CrossRef] [PubMed]
  17. I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett.94(23), 231122 (2009). [CrossRef]
  18. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998). [CrossRef] [PubMed]
  19. R. L. Nelson and J. W. Haus, “One-dimensional photonic crystals in reflection geometry for optical applications,” Appl. Phys. Lett.83(6), 1089–1091 (2003). [CrossRef]
  20. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  21. J. Gao, Q. Zhan, and A. M. Sarangan, “High-index low-loss gallium phosphide thin films fabricated by radio frequency magnetron sputtering,” Thin Solid Films519(16), 5424–5428 (2011). [CrossRef]
  22. J. W. Haus and A. Lakhtakia, The Handbook of Nanotechnology (SPIE Press, 2004), Chap. 3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (1860 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited