OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 7 — Nov. 1, 2011
  • pp: 1224–1231

Homogenous silver-doped nanocomposite glass

Stefan Wackerow, Gerhard Seifert, and Amin Abdolvand  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 7, pp. 1224-1231 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (854 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Silver nanoparticles are generated in glass by a dry process. First silver ions are driven into the glass by electric field-assisted ion exchange. Subsequent annealing in air led to the formation of silver nanoparticles beneath the surface of the glass. A thin slice of the cross section of the sample was prepared. This visualization of the depth profile facilitated optical analysis of the embedded layer containing silver nanoparticles to be preformed. We observed that there were narrower plasmon bands close to the sample surface and wider plasmon bands in lower layers. It is attributed to the formation of larger nanoparticles with lower number density close to the surface and slightly smaller nanoparticles with higher number density in the depth of the sample.

© 2011 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.4670) Materials : Optical materials
(160.4236) Materials : Nanomaterials

ToC Category:
Glass and Other Amorphous Materials

Original Manuscript: September 20, 2011
Revised Manuscript: October 11, 2011
Manuscript Accepted: October 11, 2011
Published: October 12, 2011

Stefan Wackerow, Gerhard Seifert, and Amin Abdolvand, "Homogenous silver-doped nanocomposite glass," Opt. Mater. Express 1, 1224-1231 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science (Springer, 1995).
  2. V. M. Shalaev, Optical Properties of Nanostructured Random Media (Springer, 2001).
  3. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [CrossRef]
  4. R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003). [CrossRef] [PubMed]
  5. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002). [CrossRef] [PubMed]
  6. P. Chakraborty, “Metal nanoclusters in glasses as nonlinear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998). [CrossRef]
  7. F. Gonella and P. Mazzoldi, Handbook of Nanostructured Materials and Nanotechnology, Vol. 4 (Academic Press, 2000), pp. 81 ff.
  8. A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005). [CrossRef]
  9. A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. (Deerfield Beach Fla.)17(24), 2983–2987 (2005). [CrossRef]
  10. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008). [CrossRef]
  11. A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt.48(25), F37–F44 (2009). [CrossRef] [PubMed]
  12. C. Corbari, M. Beresna, and P. G. Kazansky, “Saturation of absorption in noble metal doped nanocomposite glass film excited by evanescent light field,” Appl. Phys. Lett.97(26), 261101 (2010). [CrossRef]
  13. S. I. Najafi, Introduction to Glass Integrated Optics (The Artech House Optoelectronics Library, 1992).
  14. R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol.6(6), 984–1000 (1988). [CrossRef]
  15. K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particles in glass surface layers produced by sodium-silver ion exchange—their concentration and size depth profile,” Z. Phys. D At. Mol. Clust.20(1-4), 309–311 (1991). [CrossRef]
  16. A. Berger, “Concentration and size depth profile of colloidal silver particles in glass surface produced by sodium-silver ion-exchange,” J. Non-Cryst. Solids151(1-2), 88–94 (1992). [CrossRef]
  17. N. Valles-Villarreal, A. Villalobos, and H. Márquez, “Stress in copper ion-exchanged glass waveguides,” J. Lightwave Technol.17(4), 606–612 (1999). [CrossRef]
  18. H. Márquez, D. Salazar, A. Villalobos, G. Paez, and J. M. Rincón, “Experimental study of Cu+–Na+ exchanged glass waveguides,” Appl. Opt.34(25), 5817–5822 (1995). [CrossRef] [PubMed]
  19. R. Oven, M. Yin, and P. A. Davies, “Characterization of planar optical waveguides formed by copper–sodium, electric field assisted, ion exchange in glass,” J. Phys. D Appl. Phys.37(16), 2207–2215 (2004). [CrossRef]
  20. F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D'Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys., A Mater. Sci. Process.81(5), 1065–1071 (2005). [CrossRef]
  21. Y. Chen, L. Karvonen, A. Säynätjoki, C. Ye, A. Tervonen, and S. Honkanen, “Ag nanoparticles embedded in glass by two-step ion exchange and their SERS application,” Opt. Mater. Express1(2), 164–172 (2011), http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-2-164 . [CrossRef]
  22. Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian, H. Wei, and Z. Feng, “Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption,” Solid State Sci.12(8), 1413–1418 (2010). [CrossRef]
  23. J. Sancho-Parramon, V. Janicki, P. Dubček, M. Karlušić, D. Gracin, M. Jakšić, S. Bernstorff, D. Meljanac, and K. Juraic, “Optical and structural properties of silver nanoparticles in glass matrix formed by thermal annealing of field assisted film dissolution,” Opt. Mater.32(4), 510–514 (2010). [CrossRef]
  24. A. Y. Zhang, T. Suetsugu, and K. Kadono, “Incorporation of silver into soda-lime silicate glass by a classical staining process,” J. Non-Cryst. Solids353(1), 44–50 (2007). [CrossRef]
  25. P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun.110(5-6), 611–614 (1994). [CrossRef]
  26. D. Kapila and J. L. Plawsky, “Diffusion processes for integrated waveguide fabrication in glasses: a solid-state electrochemical approach,” Chem. Eng. Sci.50(16), 2589–2600 (1995). [CrossRef]
  27. E. C. Ziemath, V. D. Araújo, and C. A. Escanhoela., “Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass,” J. Appl. Phys.104(5), 054912 (2008). [CrossRef]
  28. N. A. Sharaf, R. A. Condrate, and A. A. Ahmed, “FTIR spectral/structural investigation of the ion exchange/thermal treatment of silver ions into a silicate glass,” Mater. Lett.11(3-4), 115–118 (1991). [CrossRef]
  29. R. S. Varma, D. C. Kothari, and R. Tewari, “Nano-composite soda lime silicate glass prepared using silver ion exchange,” J. Non-Cryst. Solids355(22-23), 1246–1251 (2009). [CrossRef]
  30. U. Krieger and W. Lanford, “Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial soda-lime glass I: Experimental,” J. Non-Cryst. Solids102(1-3), 50–61 (1988). [CrossRef]
  31. F. Gonella, P. Canton, E. Cattaruzza, A. Quaranta, C. Sada, and A. Vomiero, “Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silicate glasses,” Mater. Sci. Eng. C26(5-7), 1087–1091 (2006). [CrossRef]
  32. R. Araujo, “Colorless glasses containing ion-exchanged silver,” Appl. Opt.31(25), 5221–5224 (1992). [CrossRef] [PubMed]
  33. E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999). [CrossRef]
  34. Y. Ma, J. Lin, L. F. Zhu, H. Y. Wei, D. W. Li, and S. Qin, “Optical properties of Ag nanoparticle embedded silicate glass prepared by field-assisted diffusion,” Appl. Phys., A Mater. Sci. Process.102(3), 521–525 (2011). [CrossRef]
  35. A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci.205(1-4), 323–328 (2003). [CrossRef]
  36. A. Pinchuk, G. V. Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D Appl. Phys.37(22), 3133–3139 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited