OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 7 — Nov. 1, 2011
  • pp: 1232–1243

Overcoming phase mismatch in nonlinear metamaterials [Invited]

Alec Rose and David R. Smith  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 7, pp. 1232-1243 (2011)
http://dx.doi.org/10.1364/OME.1.001232


View Full Text Article

Enhanced HTML    Acrobat PDF (943 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nonlinear metamaterials have potentially interesting applications in highly efficient wave-mixing and parametric processes, owing to their ability to combine enhanced nonlinearities with exotic and configurable linear properties. However, the strong dispersion and unconventional configurations typically associated with metamaterials place strong demands on phase matching in such structures. In this paper, we present an overview of potential phase matching solutions for wave-mixing processes in nonlinear metamaterials. Broadly speaking, we divide the phase matching solutions into conventional techniques (anomalous dispersion, birefringence, and quasi-phase matching) and metamaterial-inspired techniques (negative-index and index-near-zero phase matching), offering numerical and experimental examples where possible. We find that not only is phase matching feasible in metamaterials, but metamaterials can support a wide range of phase matching configurations that are otherwise impossible in natural materials. These configurations have their most compelling applications in those devices where at least one of the interacting waves is counter-propagating, such as the mirror-less optical parametric oscillator and the nonlinear optical mirror.

© 2011 OSA

OCIS Codes
(160.3380) Materials : Laser materials
(290.4210) Scattering : Multiple scattering

ToC Category:
Metamaterials

History
Original Manuscript: September 12, 2011
Manuscript Accepted: October 5, 2011
Published: October 13, 2011

Virtual Issues
Nonlinear Optics (2011) Optical Materials Express
(2011) Advances in Optics and Photonics

Citation
Alec Rose and David R. Smith, "Overcoming phase mismatch in nonlinear metamaterials [Invited]," Opt. Mater. Express 1, 1232-1243 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-7-1232


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett.7, 118–119 (1961). [CrossRef]
  2. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997).
  3. I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron.34, 797–833 (2002). [CrossRef]
  4. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962). [CrossRef]
  5. P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,” Rev. Mod. Phys.35, 23–39 (1963). [CrossRef]
  6. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  7. S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett.9, 114–166 (1966). [CrossRef]
  8. J. G. Meadors, “Steady-state theory of backward-traveling-wave parametric interactions,” J. Appl. Phys.40, 2510–2512 (1969). [CrossRef]
  9. Y. Ding and J. Khurgin, “Backward optical parametric oscillators and amplifiers,” IEEE J. Quantum Electron.32, 1574–1582 (1996). [CrossRef]
  10. Y. Ding, J. Kang, and J. Khurgin, “Theory of backward second-harmonic and third-harmonic generation using laser pulses in quasi-phase-matched second-order nonlinear medium,” IEEE J. Quantum Electron.34, 966–974 (1998). [CrossRef]
  11. C. Conti, G. Assanto, and S. Trillo, “Cavityless oscillation through backward quasi-phase-matched second-harmonic generation,” Opt. Lett.24, 1139–1141 (1999). [CrossRef]
  12. J. U. Kang, Y. J. Ding, W. K. Burns, and J. S. Melinger, “Backward second-harmonic generation in periodically poled bulk LiNbO3,” Opt. Lett.22, 862–864 (1997). [CrossRef] [PubMed]
  13. C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics1, 459–462 (2007). [CrossRef]
  14. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001). [CrossRef] [PubMed]
  15. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006). [CrossRef] [PubMed]
  16. A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett.91, 037401 (2003). [CrossRef] [PubMed]
  17. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313, 502–504 (2006). [CrossRef] [PubMed]
  18. F. Niesler, N. Feth, S. Linden, J. Niegemann, J. Gieseler, K. Busch, and M. Wegener, “Second-harmonic generation from split-ring resonators on a gaas substrate,” Opt. Lett.34, 1997–1999 (2009). [CrossRef] [PubMed]
  19. D. Huang, A. Rose, E. Poutrina, S. Larouche, and D. R. Smith, “Wave mixing in nonlinear magnetic metacrystal,” Appl. Phys. Lett.98, 204102 (2011). [CrossRef]
  20. M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert, “Amplification and squeezing of quantum noise with a tunable josephson metamaterial,” Nat. Phys.4, 929–931 (2008). [CrossRef]
  21. D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, and M. V. Gorkunov, “Self-tuning mechanisms of nonlinear split-ring resonators,” Appl. Phys. Lett.91, 144107 (2007). [CrossRef]
  22. D. Huang, E. Poutrina, and D. R. Smith, “Analysis of the power dependent tuning of a varactor-loaded metamaterial at microwave frequencies,” Appl. Phys. Lett.96, 104104 (2010). [CrossRef]
  23. A. Rose and D. R. Smith, “A quantitative study of the enhancement of bulk nonlinearities in metamaterials,” (submitted to Phys. Rev. A).
  24. A. Bahabad, M. M. Murnane, and H. C. Kapteyn, “Quasi-phase-matching of momentum and energy in nonlinear optical processes,” Nat. Photonics4, 570–575 (2010). [CrossRef]
  25. A. Yariv, Quantum Electronics (John Wiley and Sons, 1989).
  26. E. Poutrina, D. Huang, and D. R. Smith, “Analysis of nonlinear electromagnetic metamaterials,” New J. Phys.12, 093010 (2010). [CrossRef]
  27. A. Popov and V. Shalaev, “Negative-index metamaterials: second-harmonic generation, manley-rowe relations and parametric amplification,” Appl. Phys. B84, 131–137 (2006). [CrossRef]
  28. T. C. Kowalczyk, K. D. Singer, and P. A. Cahill, “Anomalous-dispersion phase-matched second-harmonic generation in a polymer waveguide,” Opt. Lett.20, 2273–2275 (1995). [CrossRef] [PubMed]
  29. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech.47, 2075–2084 (1999). [CrossRef]
  30. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90, 077405 (2003). [CrossRef] [PubMed]
  31. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470, 366–371 (2011). [CrossRef]
  32. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E71, 036617 (2005). [CrossRef]
  33. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  34. A. Rose, S. Larouche, D. Huang, E. Poutrina, and D. R. Smith, “Nonlinear parameter retrieval from three- and four-wave mixing in metamaterials,” Phys. Rev. E82, 036608 (2010). [CrossRef]
  35. M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28, 2631–2654 (1992). [CrossRef]
  36. D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E71, 036609 (2005). [CrossRef]
  37. A. Rose, D. Huang, and D. R. Smith, “Controlling the second harmonic in a phase-matched negative-index metamaterial,” Phys. Rev. Lett.107, 063902 (2011). [CrossRef] [PubMed]
  38. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444, 597–600 (2006). [CrossRef] [PubMed]
  39. A. Degiron, J. J. Mock, and D. R. Smith, “Modulating and tuning the response of metamaterials at the unit cell level,” Opt. Express15, 1115–1127 (2007). [CrossRef] [PubMed]
  40. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2, 295–298 (2008). [CrossRef]
  41. T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science325, 1518–1521 (2009). [CrossRef] [PubMed]
  42. A. Rose and D. R. Smith, “Broadly tunable quasi-phase-matching in nonlinear metamaterials,” Phys. Rev. A84, 013823 (2011). [CrossRef]
  43. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000). [CrossRef] [PubMed]
  44. V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, “Linear and nonlinear wave propagation in negative refraction metamaterials,” Phys. Rev. B69, 165112 (2004). [CrossRef]
  45. I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Second-harmonic generation in nonlinear left-handed metamaterials,” J. Opt. Soc. Am. B23, 529–534 (2006). [CrossRef]
  46. A. K. Popov and V. M. Shalaev, “Compensating losses in negative-index metamaterials by optical parametric amplification,” Opt. Lett.31, 2169–2171 (2006). [CrossRef] [PubMed]
  47. N. M. Litchinitser and V. Shalaev, “Metamaterials: Loss as a route to transparency,” Nat. Photonics3, 75 (2009). [CrossRef]
  48. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E70, 046608 (2004). [CrossRef]
  49. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ-near-zero materials,” Phys. Rev. Lett.97, 157403 (2006). [CrossRef] [PubMed]
  50. M. A. Vincenti, D. de Ceglia, A. Ciattoni, and M. Scalora, “Singularity-driven second and third harmonic generation in a ɛ-near-zero nanolayer,” arXiv:1107.2354 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited