OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 7 — Nov. 1, 2011
  • pp: 1262–1271

Conicity and depth effects on the optical transmission of lithium niobate photonic crystals patterned by focused ion beam

Ozgur Yavuzcetin, Birol Ozturk, Dong Xiao, and Srinivas Sridhar  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 7, pp. 1262-1271 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2936 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on novel focused ion beam fabrication techniques that can greatly improve the optical performance of photonic crystal structures. The finite depth and conicity effects of holes and trenches in Lithium Niobate (LN) photonic crystals have been theoretically analyzed, showing that the conicity causes refraction into the bulk sample, resulting in high transmission loss and no useful spectral features. The techniques for reducing the conicity angle from 25° to 5° were explained for the focused ion beam (FIB) milled structures.

© 2011 OSA

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(230.2090) Optical devices : Electro-optical devices
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: September 9, 2011
Revised Manuscript: October 9, 2011
Manuscript Accepted: October 10, 2011
Published: October 17, 2011

Ozgur Yavuzcetin, Birol Ozturk, Dong Xiao, and Srinivas Sridhar, "Conicity and depth effects on the optical transmission of lithium niobate photonic crystals patterned by focused ion beam," Opt. Mater. Express 1, 1262-1271 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Sriram and S. A. Kingsley, “Sensitivity enhancements to photonic electric field sensor,” SPIE Defense & Security Symposium, Orlando, FL, 12–16 April 2004.
  2. H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett.19(6), 417–419 (2007). [CrossRef]
  3. H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A24(4), 1012–1015 (2006). [CrossRef]
  4. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys.106(8), 081101 (2009). [CrossRef]
  5. G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316–320 (2010). [CrossRef]
  6. Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum Electron.11(6), 1292–1298 (2005). [CrossRef]
  7. M. Roussey, M. P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett.87(24), 241101 (2005). [CrossRef]
  8. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett.31(20), 2972–2974 (2006). [CrossRef] [PubMed]
  9. J. Ouyang, X. Wang, and M. Qi, “Meep,” DOI: (2011). [CrossRef]
  10. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  11. Srico Inc., 2724 Sawbury Blvd., Columbus, OH 43235, USA.
  12. N. J. Bassom and T. Mai, “Modeling and optimization XeF2-enhanced FIB milling of Silicon,” in Proc. 25th International Symposium for Testing and Failure Analysis, Santa Clara, CA, 255–261 (1999).
  13. H. Nakamura, H. Komano, and M. Ogasawara, “Focused ion beam assisted etching of quartz in XeF2 without transmittence reduction for phase shifting mask repair,” Jpn. J. Appl. Phys.31(Part 1, No. 12B), 4465–4467 (1992). [CrossRef]
  14. J. Kettle, R. T. Hoyle, and S. Dimov, “Fabrication of step-and-flash imprint lithography (S-FIL) templates using XeF2 enhanced focused ion-beam etching,” Appl. Phys., A Mater. Sci. Process.96(4), 819–825 (2009). [CrossRef]
  15. G. W. Burr, S. Diziain, and M. P. Bernal, “The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals,” Opt. Express16(9), 6302–6316 (2008). [CrossRef] [PubMed]
  16. D. Runde, S. Brunken, C. E. Rüter, and D. Kip, “Integrated optical electric field sensor based on a Bragg grating in lithium niobate,” Appl. Phys. B86(1), 91–95 (2006). [CrossRef]
  17. A. Suzuki, T. Iwamoto, A. Enokihara, H. Murata, and Y. Okamura, “Fabrication of Bragg gratings with deep grooves in LiNbO3 ridge optical waveguide,” Microelectron. Eng.85(5-6), 1417–1420 (2008). [CrossRef]
  18. K. Ghoumid, R. Ferriere, B. E. Benkelfat, B. Guizal, and T. Gharbi, “Optical performance of Bragg gratings fabricated in Ti:LiNbO3 waveguides by focused ion beam milling,” J. Lightwave Technol.28, 3488–3493 (2010).
  19. L. Pierno, M. Dispenza, A. Secchi, A. Fiorello, and V. Foglietti, “A lithium niobate electro-optic tunable Bragg filter fabricated by electron beam lithography,” J. Opt. A, Pure Appl. Opt.10(6), 064017 (2008). [CrossRef]
  20. D. Grobnic, S. J. Mihailov, C. W. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.17(7), 1453–1455 (2005). [CrossRef]
  21. J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D Appl. Phys.36(3), R1–R16 (2003). [CrossRef]
  22. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett.32(5), 533–535 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited