OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 7 — Nov. 1, 2011
  • pp: 1272–1285

Infrared and upconversion spectroscopic studies of high Er3+content transparent YAG ceramic

M. Pokhrel, G. A. Kumar, P. Samuel, K. I. Ueda, T. Yanagitani, H. Yagi, and D. K. Sardar  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 7, pp. 1272-1285 (2011)
http://dx.doi.org/10.1364/OME.1.001272


View Full Text Article

Enhanced HTML    Acrobat PDF (1817 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this article, we report the detailed spectroscopic studies of high Er3+content (50%) transparent YAG ceramic co-doped with nominal Cr3+ content (0.1 mol %). Various radiative and non-radiative spectroscopic properties such as radiative decay time, fluorescence branching ratio, emission/absorption cross sections, internal radiative quantum yields of the infrared and the upconverted emission bands are explored using standard experimental and theoretical methods and compared with YAG single crystal. Results show that although the non-radiative losses are high for 50% Er doped ceramic; several radiative spectral properties are almost in agreement with those for the single crystal YAG. Furthermore, because of the low dopant concentration of Cr3+, the sensitizing effect of Cr3+ was not observed.

© 2011 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(140.3613) Lasers and laser optics : Lasers, upconversion

ToC Category:
Laser Materials

History
Original Manuscript: June 30, 2011
Revised Manuscript: August 12, 2011
Manuscript Accepted: October 10, 2011
Published: October 17, 2011

Citation
M. Pokhrel, G. A. Kumar, P. Samuel, K. I. Ueda, T. Yanagitani, H. Yagi, and D. K. Sardar, "Infrared and upconversion spectroscopic studies of high Er3+content transparent YAG ceramic," Opt. Mater. Express 1, 1272-1285 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-7-1272


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. L. Chubb, A. Maria, T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc.19(13-14), 2551–2562 (1999). [CrossRef]
  2. T. Yanagitani, H. Yagi, and M. Ichikawa, “Production of yttrium-aluminum-garnet fine powder,” Japanese Patent 10–101333 (1998).
  3. G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004). [CrossRef]
  4. M. Kaczkan, M. Borowska, K. Kolodziejak, T. Lukasiewicz, and M. Malinowski, “Intensity of optical transitions of Er3+ in Yb3Al5O12 crystal,” Opt. Mater.30(5), 703–706 (2008). [CrossRef]
  5. M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+: YAG at 300–550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B91(2), 249–256 (2008). [CrossRef]
  6. J. X. Meng, K. W. Cheah, Z. P. Shi, and J. Q. Li, “Intense 1540 nm emission from Er doped Ce:YAG phosphor,” Appl. Phys. Lett.91(15), 151107 (2007). [CrossRef]
  7. E. Georgiou, F. Kiriakidi, O. Musset, and J.-P. Boquillon, “1.65-μm Er:Yb:YAG diode-pumped laser delivering 80-mJ pulse energy,” Opt. Eng.44(6), 064202–064212 (2005). [CrossRef]
  8. V. Lupei, A. Lupei, and A. Ikesue, “Transparent polycrystalline ceramic laser materials,” Opt. Mater.30(11), 1781–1786 (2008). [CrossRef]
  9. D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6-µm-erbium-doped yttrium aluminum garnet solid-state laser,” Appl. Phys. Lett.86(13), 131115 (2005). [CrossRef]
  10. W. Q. Shi, M. Bass, and M. Birnbaum, “Effects of energy transfer among Er3+ ions on the fluorescence decay and lasing properties of heavily doped Er:Y3AI5012,” J. Opt. Soc. Am. B7(8), 1456–1462 (1990). [CrossRef]
  11. V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5012:Er 3+ crystals,” Sov. J. Quantum Electron.16(2), 274–276 (1986). [CrossRef]
  12. D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-μm laser,” Opt. Lett.24(6), 385–387 (1999). [CrossRef] [PubMed]
  13. J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication microstructure and optical properties of polycrystalline Er3+:Y3Al5O12 ceramics,” Ceram. Int.37(1), 119–125 (2011). [CrossRef]
  14. J. Zhou, W. Zhang, T. Huang, L. Wang, J. Li, W. Liu, B. Jiang, Y. Pan, and J. Guo, “Optical properties of Er, Yb co-doped YAG transparent ceramics,” Ceram. Int.37(2), 513–519 (2011). [CrossRef]
  15. J. Zhou, W. Zhang, J. Li, B. Jiang, W. Liu, and Y. Pan, “Upconversion luminescence of high content Er-doped YAG transparent ceramics,” Ceram. Int.36(1), 193–197 (2010). [CrossRef]
  16. G. Qin, J. Lu, J. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun.132(2), 103–106 (2004). [CrossRef]
  17. L. Min, W. Shiwei, Z. Jian, A. Liqiong, and C. Lidong, “Preparation and upconversion luminescence of YAG:Er3+:Yb3+ transparent ceramics,” J. Rare Earths24(6), 732–735 (2006). [CrossRef]
  18. D. K. Sardar, C. C. Russell, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys.97(12), 123501 (2005). [CrossRef]
  19. T. Saiki, S. Motokoshi, K. Imasaki, H. Fujita, M. Nakatsuka, and C. Yamanaka, “Nd/Cr:YAG ceramic rod laser pumped using arc-metal-halide-lamp,” Jpn. J. Appl. Phys.46(1), 156–160 (2007). [CrossRef]
  20. T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr:YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006). [CrossRef]
  21. H. Yagi, T. Yanagitani, H. Yoshida, M. Nakatsuka, and K. Ueda, “Highly efficient flash lamp-pumped Cr3+ and Nd3+ co-doped Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.45(1A), 133–135 (2006). [CrossRef]
  22. Z. J. Kiss and R. C. Duncan, “Cross-pumped Cr3+/Nd3+ YAG laser crystal,” Appl. Phys. Lett.5(10), 200–202 (1964). [CrossRef]
  23. R. Gross, G. Huber, B. Struve, and E. W. Duczinski, “Cr3+-sensitization of the 3μm Er3+:YAG laser,” J. Phys. Colloq.1(7), C7.363–C7.366 (1991). [CrossRef]
  24. H. Stange, K. Petermann, G. Huber, and E. W. Duczynski, “Continuous wave 1.6 μm laser action in Er doped garnets at room temperature,” Appl. Phys., B Photophys. Laser Chem.49(3), 269–273 (1989). [CrossRef]
  25. J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B Condens. Matter48(21), 15561–15573 (1993). [CrossRef] [PubMed]
  26. Y. Yu, Z. Wu, and S. Zhang, “Concentration effects of Er3+ ion in YAG:Er laser crystal,” J. Alloy. Comp.302(1-2), 204–208 (2000). [CrossRef]
  27. H. Xu, L. Zhou, Z. Dai, and Z. Jiang, “Decay properties of Er3+ ions in Er3+:YAG and Er:YAlO3,” Physica B324(1-4), 43–48 (2002). [CrossRef]
  28. http://www.baikowski.com/
  29. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962). [CrossRef]
  30. G. S. Ofelt, “Intensity of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962). [CrossRef]
  31. A. A. Kaminskii, Laser Crystals, Their Physics and Properties (Springer, 1981).
  32. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21(5), 836–850 (1953). [CrossRef]
  33. C. Wei, Doped Nanomaterials and Nanodevices, Photonics and Nanodevices (American Scientific Publishers, 2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited