OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 7 — Nov. 1, 2011
  • pp: 1301–1306

Spectral tuning of IR-resonant nanoantennas by nanogap engineering

Daniel Weber, Julia Katzmann, Frank Neubrech, Thomas Härtling, and Annemarie Pucci  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 7, pp. 1301-1306 (2011)
http://dx.doi.org/10.1364/OME.1.001301


View Full Text Article

Enhanced HTML    Acrobat PDF (1343 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on tuning the plasmonic properties of gold nanoantenna arrays resonant in the infrared (IR) spectral region. In particular, we achieve a manipulation of the antenna resonance by decreasing the antenna separation distance via photochemical metal deposition. Narrowing the antenna gaps is monitored using scanning electron microscopy, while increased plasmonic coupling and an associated red-shift of the plasmon resonance is observed by microscopic IR spectroscopy. Since smaller gap sizes lead to enhanced electric fields between the antenna arms, we propose photochemical metal deposition as a fabrication step for surface-enhanced IR spectroscopy (SEIRS) substrates.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(300.6340) Spectroscopy : Spectroscopy, infrared
(350.5130) Other areas of optics : Photochemistry
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: August 4, 2011
Revised Manuscript: September 20, 2011
Manuscript Accepted: October 13, 2011
Published: October 17, 2011

Citation
Daniel Weber, Julia Katzmann, Frank Neubrech, Thomas Härtling, and Annemarie Pucci, "Spectral tuning of IR-resonant nanoantennas by nanogap engineering," Opt. Mater. Express 1, 1301-1306 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-7-1301


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev.2(3), 136–159 (2008). [CrossRef]
  2. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007). [CrossRef] [PubMed]
  3. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
  4. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  5. T. Härtling and L. M. Eng, “Gold-particle-mediated detection of ferroelectric domains on the nanometer scale,” Appl. Phys. Lett.87(14), 142902 (2005). [CrossRef]
  6. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [CrossRef]
  7. T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. (Deerfield Beach Fla.)22(16), 1805–1825 (2010). [CrossRef] [PubMed]
  8. A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B247(8), 2071–2074 (2010). [CrossRef]
  9. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71(23), 235420 (2005). [CrossRef]
  10. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98(26), 266802 (2007). [CrossRef] [PubMed]
  11. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8(2), 631–636 (2008). [CrossRef] [PubMed]
  12. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008). [CrossRef] [PubMed]
  13. M. Käll, H. Xu, and P. Johansson, “Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy,” J. Raman Spectrosc.36(6-7), 510–514 (2005). [CrossRef]
  14. G. Han, D. Weber, F. Neubrech, I. Yamada, M. Mitome, Y. Bando, A. Pucci, and T. Nagao, “Infrared spectroscopic and electron microscopic characterization of gold nanogap structure fabricated by focused ion beam,” Nanotechnology22(27), 275202 (2011). [CrossRef] [PubMed]
  15. F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C114(16), 7299–7301 (2010). [CrossRef]
  16. D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes,” Opt. Express19(16), 15047–15061 (2011). [CrossRef] [PubMed]
  17. The absorption spectrum of the gold salt solution shows an onset around 550 nm and increases towards shorter wavelengths (data not shown).
  18. E. Gachard, H. Remita, J. Khatouri, B. Keita, L. Nadjo, and J. Belloni, “Radiation-induced and chemical formation of gold clusters,” New J. Chem.22(11), 1257–1265 (1998). [CrossRef]
  19. T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C112(13), 4920–4924 (2008). [CrossRef]
  20. D. Enders, T. Nagao, A. Pucci, T. Nakayama, and M. Aono, “Surface-enhanced ATR-IR spectroscopy with interface-grown plasmonic gold-island films near the percolation threshold,” Phys. Chem. Chem. Phys.13(11), 4935–4941 (2011). [CrossRef] [PubMed]
  21. A. Pucci, F. Neubrech, J. Aizpurua, T. Cornelius, and M. Lamy de la Chapelle, “Electromagnetic nanowire resonances for field-enhanced spectroscopy,” in One-Dimensional Nanostructures, Z. Wang, ed. (Springer, 2008), pp. 175–215.
  22. F. Neubrech, D. Weber, R. Lovrincic, A. Pucci, M. Lopes, T. Toury, and M. L. de La Chapelle, “Resonances of individual lithographic gold nanowires in the infrared,” Appl. Phys. Lett.93(16), 163105 (2008). [CrossRef]
  23. F. Neubrech, A. Garcia-Etxarri, D. Weber, J. Bochterle, H. Shen, M. Lamy de la Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96(21), 213111 (2010). [CrossRef]
  24. A. Trügler, J.-C. Tinguely, J. R. Krenn, A. Hohenau, and U. Hohenester, “Influence of surface roughness on the optical properties of plasmonic nanoparticles,” Phys. Rev. B83(8), 081412 (2011). [CrossRef]
  25. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004). [CrossRef] [PubMed]
  26. G. W. Bryant, I. Romero, F. J. Garcia de Abajo, and J. Aizpurua, “Simulating electromagnetic response in coupled metallic nanoparticles for nanoscale optical microscopy and spectroscopy: nanorod-end effects,” Proc. SPIE6323, 632313 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited