OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 7 — Nov. 1, 2011
  • pp: 1319–1325

Fabrication of submicrometer quasi-phase-matched devices in KTP and RKTP [Invited]

Andrius Zukauskas, Gustav Strömqvist, Valdas Pasiskevicius, Fredrik Laurell, Michael Fokine, and Carlota Canalias  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 7, pp. 1319-1325 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1312 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We review the techniques used for fabrication of bulk sub-micrometer ferroelectric domain gratings in KTiOPO4 (KTP) and demonstrate that bulk Rb-doped KTiOPO4 (RKTP) is an excellent candidate for implementation of dense domain gratings. Compared to KTP, RKTP presents predominant domain propagation along the polar c-direction, substantially reduced lateral domain broadening, and higher poling yield. As a result we obtain homogeneous sub-µm periodic poling of RKTP with a period of 690 nm in 1 mm thick samples.

© 2011 OSA

OCIS Codes
(160.2260) Materials : Ferroelectrics
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

ToC Category:

Original Manuscript: September 19, 2011
Revised Manuscript: October 18, 2011
Manuscript Accepted: October 18, 2011
Published: October 21, 2011

Virtual Issues
Nonlinear Optics (2011) Optical Materials Express

Andrius Zukauskas, Gustav Strömqvist, Valdas Pasiskevicius, Fredrik Laurell, Michael Fokine, and Carlota Canalias, "Fabrication of submicrometer quasi-phase-matched devices in KTP and RKTP [Invited]," Opt. Mater. Express 1, 1319-1325 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962). [CrossRef]
  2. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993). [CrossRef]
  3. H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett.71(24), 3474–3476 (1997). [CrossRef]
  4. S. Kurimura, N. E. Yu, Y. Nomura, M. Nakamura, K. Kitamura, and T. Sumiyoshi, “QPM wavelength converters based on stoichiometric lithium tantalate,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 92.
  5. S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett.9(3), 114–116 (1966). [CrossRef]
  6. C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics1(8), 459–462 (2007). [CrossRef]
  7. G. D. Landry and T. A. Maldonado, “Efficient nonlinear phase shifts due to cascaded second-order processes in a counterpropagating quasi-phase-matched configuration,” Opt. Lett.22(18), 1400–1402 (1997). [CrossRef] [PubMed]
  8. G. D. Landry and T. A. Maldonado, “Switching and second harmonic generation using counterpropagating quasi-phase-matching in a mirrorless configuration,” J. Lightwave Technol.17(2), 316–327 (1999). [CrossRef]
  9. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett.79(3), 314–316 (2001). [CrossRef]
  10. Z. Zhou, J. Shi, and X. Chen, “Electrically induced and tunable photonic band gap in submicron periodically poled lithium niobate,” Appl. Phys. B96(4), 787–791 (2009). [CrossRef]
  11. J. Khurgin, “Slowing and stopping photons using backward frequency conversion in quasi-phase-matched waveguides,” Phys. Rev. A72(2), 023810 (2005). [CrossRef]
  12. C.-S. Chuu and S. E. Harris, “Ultrabright backward-wave biphoton source,” Phys. Rev. A83(6), 061803 (2011). [CrossRef]
  13. V. Y. Shur, E. V. Nikolaeva, E. I. Shishkin, A. P. Chernykh, K. Terabe, K. Kitamura, H. Ito, and K. Nakamura, “Domain shape in congurent and stoichiometric lithium tantalite,” Ferroelectrics269(1), 195–200 (2002). [CrossRef]
  14. V. Gopalan, V. Dierolf, and D. A. Scrymgeour, “Defect–domain wall interactions in trigonal ferroelectrics,” Annu. Rev. Mater. Res.37(1), 449–489 (2007). [CrossRef]
  15. Y. Sheng, T. Wang, B. Ma, E. Qu, B. Cheng, and D. Zhang, “Anisotropy of domain broadening in periodically poled lithium niobate crystals,” Appl. Phys. Lett.88(4), 041121 (2006). [CrossRef]
  16. A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett.81(26), 4946–4948 (2002). [CrossRef]
  17. G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy,” Appl. Phys. Lett.82(1), 103–105 (2003). [CrossRef]
  18. V. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett.76(2), 143–145 (2000). [CrossRef]
  19. S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, “Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching,” Appl. Phys. Lett.87(23), 233106 (2005). [CrossRef]
  20. C. Canalias, J. Hirohashi, V. Pasiskevicius, and F. Laurell, “Polarization switching characteristics of flux grown KTiOPO4 and RbTiOPO4 at room temperature,” J. Appl. Phys.97(12), 124105 (2005). [CrossRef]
  21. C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Sub-micron periodically poled flux grown KTiOPO4,” Appl. Phys. Lett.82(24), 4233–4235 (2003). [CrossRef]
  22. C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase matched second harmonic generation in sub-micrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett.86(18), 181105 (2005). [CrossRef]
  23. G. Rosenman, K. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett.73(7), 865–867 (1998). [CrossRef]
  24. G. Rosenman, P. Urenski, A. Arie, M. Roth, N. Angert, S. Skliar, and M. Tseitlin, “Polarization reversal and domain grating in flux-grown KTiOPO4 crystals with variable potassium stoichiometry,” Appl. Phys. Lett.76(25), 3798–3800 (2000). [CrossRef]
  25. C. Canalias, S. Wang, V. Pasiskevicius, and F. Laurell, “Nucleation and growth of periodic domains during electric field poling in flux-grown KTiOPO4 observed by atomic force microscopy,” Appl. Phys. Lett.88(3), 032905 (2006). [CrossRef]
  26. A. Zukauskas, V. Pasiskevicius, F. Laurell, C. Canalias, M. Safinas, and A. Michailovas, “High-performance periodically poled Rb-doped KTP for frequency conversion in blue/green region,” in Europhoton2010, Europhysics Conference Abstract Volume 34C, ISBN 2–914771–64–9, Hamburg, Germany, 29 August – 3 September 2010, Paper No. FrA4.
  27. Q. Jiang, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Rb-doped potassium titanyl phosphate for periodic ferroelectric domain inversion,” J. Appl. Phys.92(5), 2717–2723 (2002). [CrossRef]
  28. S. Wang, V. Pasiskevicius, and F. Laurell, “High efficiency frequency converters with periodically poled Rb-doped KTiOPO4,” Opt. Mater.30(4), 594–599 (2007). [CrossRef]
  29. A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express1(2), 201–206 (2011). [CrossRef]
  30. F. Masiello, T. A. Lafford, P. Pernot, J. Baruchel, D. S. Keeble, P. A. Thomas, A. Zukauskas, G. Strömqvist, F. Laurell, and C. Canalias, “Investigation by coherent X-ray section topography of ferroelectric domain behaviour as a function of temperature in periodically poled Rb:KTP,” J. Appl. Cryst.44(3), 462–466 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited