OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 7 — Nov. 1, 2011
  • pp: 1326–1331

FDTD modeling to enhance the performance of an organic solar cell embedded with gold nanoparticles

Chung-How Poh, Lorenzo Rosa, Saulius Juodkazis, and Paul Dastoor  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 7, pp. 1326-1331 (2011)
http://dx.doi.org/10.1364/OME.1.001326


View Full Text Article

Enhanced HTML    Acrobat PDF (1079 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical enhancement is demonstrated in a bilayer P3HT-C60 solar cell by embedding gold nanoparticles directly into the P3HT layer of the photovoltaic device. FDTD simulations are used to model the observed performance gain. A qualitative agreement between the experimental and numerical results is achieved. This validates the numerical model and the simulation is subsequently extended to predict the performance gain of the bilayer device constructed with thinner P3HT layer. The numerical results reveal that the plasmonic structure has even larger effect on such thinner bilayer device. The enhancement is expected to be most significant when the p-n interface is allowed to assume the conformal hemispherical profile of the metal particles.

© 2011 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Plasmonics

History
Original Manuscript: September 1, 2011
Revised Manuscript: October 7, 2011
Manuscript Accepted: October 13, 2011
Published: October 21, 2011

Citation
Chung-How Poh, Lorenzo Rosa, Saulius Juodkazis, and Paul Dastoor, "FDTD modeling to enhance the performance of an organic solar cell embedded with gold nanoparticles," Opt. Mater. Express 1, 1326-1331 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-7-1326


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express17(12), 10195–10205 (2009). [CrossRef] [PubMed]
  2. V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18(S2), A237–A245 (2010). [CrossRef] [PubMed]
  3. X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express19(S4), A888–A896 (2011). [CrossRef] [PubMed]
  4. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett.92(1), 013504 (2008). [CrossRef]
  5. S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett.93(7), 073307 (2008). [CrossRef]
  6. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J.-J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells93(8), 1377–1382 (2009). [CrossRef]
  7. A. J. Morfa, T. H. Reilly, J. C. Johnson, and J. van de Lagemaat, “Plasmons in solar energy conversion,” (SPIE Newsroom, 2009), http://spie.org/x35474.xml?ArticleID=x35474 .
  8. T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett.92(24), 243304 (2008). [CrossRef]
  9. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations,” Opt. Express19(15), 14200–14209 (2011). [CrossRef] [PubMed]
  10. W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express18(S4), A620–A630 (2010). [CrossRef] [PubMed]
  11. N. N. Lal, B. F. Soares, J. K. Sinha, F. Huang, S. Mahajan, P. N. Bartlett, N. C. Greenham, and J. J. Baumberg, “Enhancing solar cells with localized plasmons in nanovoids,” Opt. Express19(12), 11256–11263 (2011). [CrossRef] [PubMed]
  12. M. O. Reese, A. J. Morfa, M. S. White, N. Kopidakis, S. E. Shaheen, G. Rumbles, and D. S. Ginley, “Pathways for the degradation of organic photovoltaic P3HT:PCBM based devices,” Sol. Energy Mater. Sol. Cells92(7), 746–752 (2008). [CrossRef]
  13. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  14. P. N. Saeta, B. I. Greene, A. R. Kortan, N. Kopylov, and F. A. Thiel, “Optical studies of single-crystal C60,” Chem. Phys. Lett.190(3-4), 184–186 (1992). [CrossRef]
  15. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited