OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 7 — Nov. 1, 2011
  • pp: 1332–1340

Wideband-rejection filters and reflection-hole filters of chalcogenide glass for circularly polarized IR-A and IR-B radiation

Drew P. Pulsifer, Raúl J. Martín-Palma, Stephen E. Swiontek, Carlo G. Pantano, and Akhlesh Lakhtakia  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 7, pp. 1332-1340 (2011)
http://dx.doi.org/10.1364/OME.1.001332


View Full Text Article

Enhanced HTML    Acrobat PDF (1166 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Compact infrared filters—either to reject infrared radiation of a specific circular-polarization state in a wide band or to transmit the same radiation in a narrow band—for the IR-A and IR-B spectral regimes were designed and fabricated by thermal evaporation of chalcogenide glass of nominal composition Ge28Sb12Se60 in a vacuum chamber.

© 2011 OSA

OCIS Codes
(130.3060) Integrated optics : Infrared
(160.1245) Materials : Artificially engineered materials
(310.6845) Thin films : Thin film devices and applications

ToC Category:
IR Materials

History
Original Manuscript: September 15, 2011
Revised Manuscript: October 16, 2011
Manuscript Accepted: October 17, 2011
Published: October 21, 2011

Citation
Drew P. Pulsifer, Raúl J. Martín-Palma, Stephen E. Swiontek, Carlo G. Pantano, and Akhlesh Lakhtakia, "Wideband-rejection filters and reflection-hole filters of chalcogenide glass for circularly polarized IR-A and IR-B radiation," Opt. Mater. Express 1, 1332-1340 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-7-1332


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 μ — A state of the art review,” Infrared Phys.195, 195–204 (1965). [CrossRef]
  2. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330, 1–12 (2003). [CrossRef]
  3. K. Tanaka and K. Shimakawa, “Chalcogenide glasses in Japan: A review on photoinduced phenomena,” Phys. Status Solidi B246, 1744–1757 (2009). [CrossRef]
  4. A. R. Hilton, Chalcogenide Glasses for Infrared Optics (McGraw–Hill, 2010).
  5. A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng.50, 034004 (2011). [CrossRef]
  6. A. Lakhtakia and M. W. McCall, “Circular polarization filters,” in Encyclopedia of Optical Engineering, R. G. Driggers, ed. (Marcel Dekker, 2003), pp. 230–236.
  7. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, 2005). [CrossRef]
  8. R. J. Martín-Palma, J. V. Ryan, and C. G. Pantano, “Spectral behavior of the optical constants in the visible/NIR of GeSbSe chalcogenide thin films grown at glancing angle,” J. Vac. Sci. Technol. A25, 587–591 (2007). [CrossRef]
  9. R. J. Martín-Palma, F. Zhang, A. Lakhtakia, A. Cheng, J. Xu, and C. G. Pantano, “Retardance of chalcogenide thin films grown by the oblique-angle-deposition technique,” Thin Solid Films517, 5553–5556 (2009). [CrossRef]
  10. H. C. Chen, Theory of Electromagnetic Waves: A Coordinate-free Approach (McGraw–Hill, 1983).
  11. Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng.39, 1863–1868 (2000). [CrossRef]
  12. A. Lakhtakia, “Generation of spectral holes by inserting central structurally chiral layer defects in periodic structurally chiral materials,” Opt. Commun.275, 283–287 (2007). [CrossRef]
  13. I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun.184, 57–66 (2000). [CrossRef]
  14. V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett.89, 033901 (2002). [CrossRef] [PubMed]
  15. J. Schmidtke and W. Stille, “Photonic defect modes in cholesteric liquid crystal films,” Eur. Phys. J. E12, 553–564 (2003). [CrossRef]
  16. J. A. Sherwin, A. Lakhtakia, and I. J. Hodgkinson, “On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements,” Opt. Commun.2009, 369–375 (2002). [CrossRef]
  17. J. B. Geddes and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt.53, 2763–2783 (2006). [CrossRef]
  18. F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent, spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun.215, 79–92 (2003). [CrossRef]
  19. F. Wang and A. Lakhtakia, “Complete exhibition of defect-mode resonance despite dissipation in structurally chiral materials,” Phys. Rev. B83, 075115 (2011). [CrossRef]
  20. R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otaño, and A. Lakhtakia, “Engineered sculptured nematic thin films,” J. Vac. Sci. Technol. A15, 2148–2152 (1997). [CrossRef]
  21. I. J. Hodgkinson, Q. H. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt.37, 2653–2659 (1998). [CrossRef]
  22. I. Hodgkinson and Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A17, 2928–2932 (1999). [CrossRef]
  23. I. Hodgkinson and Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt.38, 3621–3625 (1999). [CrossRef]
  24. I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt.39, 642–649 (2000). [CrossRef]
  25. S. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. B25, 2611–2615 (2007). [CrossRef]
  26. B. Y.-K. Hu, “Kramers–Kronig in two lines,” Am. J. Phys.57, 821 (1989). [CrossRef]
  27. Yu. N. Chirgadze, S. Yu. Venyaminov, and V. M. Lobachev, “Optical rotatory dispersion of polypeptides in the near-infrared region,” Biopolymers10, 809–826 (1971). [CrossRef] [PubMed]
  28. H. Xia, W. Tao, J. Wang, J. Zhang, and Q. Nie, “Sol-gel derived solid chiral materials and their optical activity,” Opt. Mater.27, 279–283 (2004). [CrossRef]
  29. I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun.210, 201–211 (2002). [CrossRef]
  30. R. Dror, B. Sfez, Sh. Y. Goldin, and A. Cashingad, “Etching of photosensitive chalcogenide glasses: experiments and simulations,” Opt. Express15, 12539–12547 (2007). [CrossRef] [PubMed]
  31. S. M. Pursel, M. W. Horn, and A. Lakhtakia, “Tuning of sculptured-thin-film spectral-hole filters by postdeposition etching,” Opt. Eng.46, 040507 (2007). [CrossRef]
  32. D. M. Mattox, The Foundations of Vacuum Coating Technology (Noyes Publications, 2003).
  33. A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun.194, 33–46 (2001). [CrossRef]
  34. T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J.2, 92–101 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited