OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 7 — Nov. 1, 2011
  • pp: 1353–1366

Plasmonic quantum dots for nonlinear optical applications [Invited]

M. Klopfer and R. K. Jain  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 7, pp. 1353-1366 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1625 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper focuses on the subject of nanoparticle-based absorbers and fluorophores for numerous high-efficiency absorber and emitter device applications. The latter includes the use of two-photon-absorption-induced fluorescence (TPAF) in such nanoparticles for medical applications such as deep-tissue imaging and deep-tissue photodynamic therapy (PDT). In particular, we propose and elucidate the use of advanced plasmonic quantum dot nanoparticle assemblies for such applications, and specify the design of optimized nanostructures that should result in enhancement of fluorescence signal intensity (and corresponding increases in PDT efficacies) by > 160,000 compared to those obtainable under comparable illumination conditions – from the same fluorescent labels (quantum dots or otherwise) used without plasmonic enhancement.

© 2011 OSA

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:

Original Manuscript: September 21, 2011
Revised Manuscript: October 24, 2011
Manuscript Accepted: October 24, 2011
Published: October 27, 2011

Virtual Issues
Nonlinear Optics (2011) Optical Materials Express

M. Klopfer and R. K. Jain, "Plasmonic quantum dots for nonlinear optical applications [Invited]," Opt. Mater. Express 1, 1353-1366 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300, 1434 –1436 (2003). [CrossRef] [PubMed]
  2. E. Yaghini, A. M. Seifalian, and A. J. MacRobert, “Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy,” Nanomedicine4, 353–363 (2009). [CrossRef] [PubMed]
  3. L. Wang, D. Ankuciwiez, J. Chen, and R. K. Jain, “Enhancement of Two-Photon Absorption-Induced fluorescence in semiconductor quantum dots by gold nanoparticles,” in “Nonlinear Optics: Materials, Fundamentals and Applications,” (Optical Society of America, 2009), p. NME4.
  4. R. K. Jain, “Advanced plasmonic devices for optoelectronic and integrated plasmon-optic circuit applications,” proposal submitted to AFOSR, CHTM UNM reference number 235/1099 (2009).
  5. L. Wang and R. K. Jain, “Novel non-toxic synthetic luminophores for imaging application,” UNM Invention Disclosure (2010).
  6. L. Wang, “Nonlinear optics in quantum-confined and surface-plasmon structures,” https://repository.unm.edu/handle/1928/10916 (2010). Electrical and Computer Engineering.
  7. M. Kerker and C. G. Blatchford, “Elastic scattering, absorption, and surface-enhanced Raman scattering by concentric spheres comprised of a metallic and a dielectric region,” Phys. Rev. B26, 4052–4063 (1982). [CrossRef]
  8. R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett.78, 4217–4220 (1997). [CrossRef]
  9. S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys.111, 4729–4735 (1999). [CrossRef]
  10. J. Enderlein, “Spectral properties of a fluorescing molecule within a spherical metallic nanocavity,” Phys. Chem. Chem. Phys.4, 2780–2786 (2002). [CrossRef]
  11. D. O’Neal, L. R. Hirsch, N. J. Halas, J. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett.209, 171–176 (2004). [CrossRef]
  12. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett.82, 257–259 (2003). [CrossRef]
  13. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419 –422 (2003). [CrossRef] [PubMed]
  14. H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field,” Phys. Rev. B72, 073405 (2005). [CrossRef]
  15. X. Xia, Y. Liu, V. Backman, and G. A. Ameer, “Engineering sub-100 nm multi-layer nanoshells,” Nanotechnology17, 5435–5440 (2006). [CrossRef]
  16. A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Nat. Acad. Sci.107, 13620 –13625 (2010). [CrossRef] [PubMed]
  17. M. R. Rasch, K. V. Sokolov, and B. A. Korgel, “Limitations on the optical tunability of small diameter gold nanoshells,” Langmuir25, 11777–11785 (2009). [CrossRef] [PubMed]
  18. Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nat. Nano4, 571–576 (2009). [CrossRef]
  19. X. Miao, I. Brener, and T. S. Luk, “Nanocomposite plasmonic fluorescence emitters with core/shell configurations,” J. Opt. Soc. Am. B27, 1561–1570 (2010). [CrossRef]
  20. J. Liaw and C. Liu, “Plasmonic effect of nanoshelled nanocavity on encapsulated emitter’s spontaneous emission,” J. Quant. Spec. Rad. Trans.112, 2480–2485 (2011). [CrossRef]
  21. S. J. Norton and T. Vo-Dinh, “Plasmonics quenching and enhancement of a fluorescing molecule outside and inside a silver metallic nanoshell,” IEEE Trans. Nano. (2011). Accepted for publication. [CrossRef]
  22. E. L. Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects (Elsevier Science, 2008), 1st ed. Published: Hardcover.
  23. M. Hovel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B81, 035402 (2010). [CrossRef]
  24. X. Wang, K. Chen, M. Zhao, and D. D. Nolte, “Refractive index and dielectric constant transition of ultra-thin gold from cluster to film,” Opt. Express18, 24859–24867 (2010). [CrossRef] [PubMed]
  25. A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B6, 787–796 (1989). [CrossRef]
  26. R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donega, D. C. ’t Hart, A. van Blaaderen, D. Van-maekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater.20, 2503–2512 (2008). [CrossRef]
  27. J. Kim, W. W. Bryan, and T. R. Lee, “Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores,” Langmuir24, 11147–11152 (2008). [CrossRef] [PubMed]
  28. A. Moroz, “Electron mean free path in a spherical shell geometry,” J. Chem. Phys. C112, 10641–10652 (2008). [CrossRef]
  29. G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “gold nanoshells improve single nanoparticle molecular sensors,” Nano Letters4, 1853–1857 (2004). [CrossRef]
  30. W. A. Kraus and G. C. Schatz, “Plasmon resonance broadening in small metal particles,” J. Chem. Phys.79, 6130–6139 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited