OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 7 — Nov. 1, 2011
  • pp: 1383–1392

Near IR nonlinear absorption of an organic supermolecule [Invited]

San-Hui Chi, Armand Rosenberg, Animesh Nayak, Timothy V. Duncan, Michael J. Therien, James J. Butler, Steven R. Montgomery, Guy Beadie, Richard G. S. Pong, James S. Shirk, and Steven R. Flom  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 7, pp. 1383-1392 (2011)
http://dx.doi.org/10.1364/OME.1.001383


View Full Text Article

Enhanced HTML    Acrobat PDF (1048 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The photophysics of bis(terpyridyl)osmium-(porphinato)zinc-bis(terpyridyl)osmium (OsPZnOs), a D-π-A-π-D symmetric supermolecule, were investigated in the femtosecond and nanosecond regimes. The supermolecule exhibits a two-photon absorption (δpeak ~900 GM) in the near IR (900-1300 nm) and optical pumping by two-photon absorption leads to a broad excited state absorption (σpeak ~1.1 × 10−16 cm2) in the same near IR region. Since the excited state has a long lifetime, OsPZnOs exhibits a strong nanosecond nonlinear absorption in this region. That nonlinear absorption is substantially enhanced when OsPZnOs is incorporated into a multimode waveguide. When two-photon pumping is the dominant mechanism, an additional enhancement of up to ~100 × in the nonlinear absorption is observed in a microchannel waveguide. OsPZnOs is a promising material for photonic applications such as optical noise suppression and optical limiting in the near IR.

© 2011 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.0190) Nonlinear optics : Nonlinear optics
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Organics and Polymers

History
Original Manuscript: September 6, 2011
Revised Manuscript: October 24, 2011
Manuscript Accepted: October 25, 2011
Published: October 31, 2011

Virtual Issues
Nonlinear Optics (2011) Optical Materials Express

Citation
San-Hui Chi, Armand Rosenberg, Animesh Nayak, Timothy V. Duncan, Michael J. Therien, James J. Butler, Steven R. Montgomery, Guy Beadie, Richard G. S. Pong, James S. Shirk, and Steven R. Flom, "Near IR nonlinear absorption of an organic supermolecule [Invited]," Opt. Mater. Express 1, 1383-1392 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-7-1383


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Keinan, M. J. Therien, D. N. Beratan, and W. T. Yang, “Molecular design of porphyrin-based nonlinear optical materials,” J. Phys. Chem. A112(47), 12203–12207 (2008). [CrossRef] [PubMed]
  2. J. J. Butler, J. J. Wathen, S. R. Flom, R. G. S. Pong, and J. S. Shirk, “Optical limiting properties of nonlinear multimode waveguides,” Opt. Lett.28(18), 1689–1691 (2003). [CrossRef] [PubMed]
  3. S. H. Chi, J. M. Hales, M. Cozzuol, C. Ochoa, M. Fitzpatrick, and J. W. Perry, “Conjugated polymer-fullerene blend with strong optical limiting in the near-infrared,” Opt. Express17(24), 22062–22072 (2009). [CrossRef] [PubMed]
  4. J. M. Hales, M. Cozzuol, T. E. O. Screen, H. L. Anderson, and J. W. Perry, “Metalloporphyrin polymer with temporally agile, broadband nonlinear absorption for optical limiting in the near infrared,” Opt. Express17(21), 18478–18488 (2009). [CrossRef] [PubMed]
  5. J. W. Perry, K. Mansour, I. Y. S. Lee, X. L. Wu, P. V. Bedworth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, and H. Sasabe, “Organic optical limiter with a strong nonlinear absorptive response,” Science273(5281), 1533–1536 (1996). [CrossRef]
  6. J. W. Perry, K. Mansour, S. R. Marder, K. J. Perry, D. Alvarez, and I. Choong, “Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines,” Opt. Lett.19(9), 625–627 (1994). [CrossRef] [PubMed]
  7. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in Solids,” IEEE J. Quantum Electron.27(6), 1296–1309 (1991). [CrossRef]
  8. J. S. Shirk, R. G. S. Pong, F. J. Bartoli, and A. W. Snow, “Optical limiter using a lead phthalocyanine,” Appl. Phys. Lett.63(14), 1880–1882 (1993). [CrossRef]
  9. J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of axial substitution on the optical limiting properties of indium phthalocyanines,” J. Phys. Chem. A104(7), 1438–1449 (2000). [CrossRef]
  10. C. W. Spangler, “Recent development in the design of organic materials for optical power limiting,” J. Mater. Chem.9(9), 2013–2020 (1999). [CrossRef]
  11. M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998). [CrossRef] [PubMed]
  12. H. T. Uyeda, Y. X. Zhao, K. Wostyn, I. Asselberghs, K. Clays, A. Persoons, and M. J. Therien, “Unusual frequency dispersion effects of the nonlinear optical response in highly conjugated (polypyridyl)metal-(porphinato)zinc(II) chromophores,” J. Am. Chem. Soc.124(46), 13806–13813 (2002). [CrossRef] [PubMed]
  13. T. V. Duncan, T. Ishizuka, and M. J. Therien, “Molecular engineering of intensely near-infrared absorbing excited states in highly conjugated oligo(porphinato)zinc-(polypyridyl)metal(II) supermolecules,” J. Am. Chem. Soc.129(31), 9691–9703 (2007). [CrossRef] [PubMed]
  14. C. J. Yang, S. A. Jenekhe, J. S. Meth, and H. Vanherzeele, “Probing structure-property relationships in third-order nonlinear optical polymers: Third harmonic generation spectroscopy and theoretical modeling of systematically derivatized conjugated aromatic polyimines,” Ind. Eng. Chem. Res.38(5), 1759–1774 (1999). [CrossRef]
  15. T. Ishizuka, L. E. Sinks, K. Song, S. T. Hung, A. Nayak, K. Clays, and M. J. Therien, “The roles of molecular structure and effective optical symmetry in evolving dipolar chromophoric building blocks to potent octopolar nonlinear optical chromophores,” J. Am. Chem. Soc.133(9), 2884–2896 (2011). [CrossRef] [PubMed]
  16. G. de la Torre, P. Vázquez, F. Agulló-López, and T. Torres, “Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds,” Chem. Rev.104(9), 3723–3750 (2004). [CrossRef] [PubMed]
  17. T. Yamamoto, Z. H. Zhou, T. Kanbara, M. Shimura, K. Kizu, T. Maruyama, Y. Nakamura, T. Fukuda, B. L. Lee, N. Ooba, S. Tomaru, T. Kurihara, T. Kaino, K. Kubota, and S. Sasaki, “π-Conjugated donor-acceptor copolymers constituted of π-excessive and π-deficient arylene units. Optical and electrochemical properties in relation to CT structure of the polymer,” J. Am. Chem. Soc.118(43), 10389–10399 (1996). [CrossRef]
  18. J. E. Rogers, J. E. Slagle, D. M. Krein, A. R. Burke, B. C. Hall, A. Fratini, D. G. McLean, P. A. Fleitz, T. M. Cooper, M. Drobizhev, N. S. Makarov, A. Rebane, K. Y. Kim, R. Farley, and K. S. Schanze, “Platinum acetylide two-photon chromophores,” Inorg. Chem.46(16), 6483–6494 (2007). [CrossRef] [PubMed]
  19. A. Rosenberg and J. S. Shirk, “Nonlinear absorption in waveguides,” Nonlinear Opt., Quantum Opt.40, 11 (2010).
  20. T. V. Duncan, I. V. Rubtsov, H. T. Uyeda, and M. J. Therien, “Highly conjugated (polypyridyl)metal-(porphinato)zinc(II) compounds: long-lived, high oscillator strength, excited-state absorbers having exceptional spectral coverage of the near-infrared,” J. Am. Chem. Soc.126(31), 9474–9475 (2004). [CrossRef] [PubMed]
  21. M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, “Extremely strong near-IR two-photon absorption in conjugated porphyrin dimers: quantitative description with three-essential-states model,” J. Phys. Chem. B109(15), 7223–7236 (2005). [CrossRef] [PubMed]
  22. G. E. O'Keefe, G. J. Denton, E. J. Harvey, R. T. Phillips, R. H. Friend, and H. L. Anderson, “Femtosecond transient photoinduced transmission measurements on a novel conjugated zinc porphyrin system,” J. Chem. Phys.104(3), 805–811 (1996). [CrossRef]
  23. T. V. Duncan, K. Song, S. T. Hung, I. Miloradovic, A. Nayak, A. Persoons, T. Verbiest, M. J. Therien, and K. Clays, “Molecular symmetry and solution-phase structure interrogated by hyper-Rayleigh depolarization measurements: elaborating highly hyperpolarizable D2-symmetric chromophores,” Angew. Chem. Int. Ed. Engl.47(16), 2978–2981 (2008). [CrossRef] [PubMed]
  24. A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, and A. Vonzelewsky, “Ru(II) polypyridine complexes - photophysics, photochemistry, electrochemistry, and chemi-luminescence,” Coord. Chem. Rev.84, 85–277 (1988). [CrossRef]
  25. J. P. Sauvage, J. P. Collin, J. C. Chambron, S. Guillerez, C. Coudret, V. Balzani, F. Barigelletti, L. Decola, and L. Flamigni, “Ruthenium(II) and Osmium(II) bis(terpyridine) complexes in covalently-linked multicomponent systems: synthesis, electrochemical behavior, absorption spectra, and photochemical and photophysical properties,” Chem. Rev.94(4), 993–1019 (1994). [CrossRef]
  26. F. W. Vance and J. T. Hupp, “Probing the symmetry of the nonlinear optic chromophore Ru(trans-4,4 '-diethylaminostyryl-2,2 '-bipyridine)32+: Insight from polarized Hyper-Rayleigh scattering and electroabsorption (Stark) spectroscopy,” J. Am. Chem. Soc.121(16), 4047–4053 (1999). [CrossRef]
  27. M. Konstantaki, E. Koudoumas, S. Couris, P. Laine, E. Amouyal, and S. Leach, “Substantial non-linear optical response of new polyads based on Ru and Os complexes of modified terpyridines,” J. Phys. Chem. B105(44), 10797–10804 (2001). [CrossRef]
  28. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n(2) measurements,” Opt. Lett.14(17), 955–957 (1989). [CrossRef] [PubMed]
  29. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990). [CrossRef]
  30. E. W. Van Stryland and M. Sheik-Bahae, “Z-Scan measurements of optical nonlinearities,” in Characterization techniques and tabulation for organic nonlinear materials, M. G. Kuzyk, and C. W. Dirk, eds. (Marcel Dekker, Inc., 1998), pp. 655–692.
  31. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B11(11), 2206–2215 (1994). [CrossRef]
  32. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003). [CrossRef]
  33. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B9(3), 405–414 (1992). [CrossRef]
  34. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt.37(3), 546–550 (1998). [CrossRef] [PubMed]
  35. A. Major, F. Yoshino, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Ultrafast nonresonant third-order optical nonlinearities in ZnSe for photonic switching at telecom wavelengths,” Appl. Phys. Lett.85(20), 4606–4608 (2004). [CrossRef]
  36. T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett.65(14), 1739–1741 (1994). [CrossRef]
  37. R. L. Sutherland, M. C. Brant, J. Heinrichs, J. E. Rogers, J. E. Slagle, D. G. McLean, and P. A. Fleitz, “Excited-state characterization and effective three-photon absorption model of two-photon-induced excited-state absorption in organic push-pull charge-transfer chromophores,” J. Opt. Soc. Am. B22(9), 1939–1948 (2005). [CrossRef]
  38. I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, “Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid cored fiber array,” IEEE J. Sel. Top. Quantum Electron.7(5), 760–768 (2001). [CrossRef]
  39. I. C. Khoo, A. Diaz, and J. W. Ding, “Nonlinear-absorbing fiber array for large-dynamic-range optical limiting application against intense short laser pulses,” J. Opt. Soc. Am. B21(6), 1234–1240 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited