OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 8 — Dec. 1, 2011
  • pp: 1416–1424

Lateral gradient index microlenses written in ophthalmic hydrogel polymers by femtosecond laser micromachining

Lisen Xu and Wayne H. Knox  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 8, pp. 1416-1424 (2011)
http://dx.doi.org/10.1364/OME.1.001416


View Full Text Article

Enhanced HTML    Acrobat PDF (1026 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ophthalmic hydrogel polymers are micromachined with near-infrared femtosecond laser pulses. Refractive index changes up to + 0.05 have been obtained, and lateral gradient index refractive structures are written into the flat polymers. By measuring the transmitted wavefront of the micromachined polymer, we find induced astigmatism as high as 0.8 diopters in the micromachined region.

© 2011 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.5470) Materials : Polymers
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Laser Materials Processing

History
Original Manuscript: September 26, 2011
Revised Manuscript: October 20, 2011
Manuscript Accepted: October 20, 2011
Published: November 2, 2011

Citation
Lisen Xu and Wayne H. Knox, "Lateral gradient index microlenses written in ophthalmic hydrogel polymers by femtosecond laser micromachining," Opt. Mater. Express 1, 1416-1424 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-8-1416


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett.26(19), 1516–1518 (2001). [CrossRef] [PubMed]
  2. K. Minoshima, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, “Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing,” Opt. Express10(15), 645–652 (2002). [PubMed]
  3. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  4. N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, “Fabrication of a periodic structure with a high refractive-index difference by femtosecond laser pulses,” Opt. Express12(17), 4019–4024 (2004). [CrossRef] [PubMed]
  5. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett.30(4), 352–354 (2005). [CrossRef] [PubMed]
  6. R. Osellame, N. Chiodo, G. della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett.29(16), 1900–1902 (2004). [CrossRef] [PubMed]
  7. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett.26(2), 93–95 (2001). [CrossRef] [PubMed]
  8. A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett.26(1), 42–43 (2001). [CrossRef] [PubMed]
  9. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B19(10), 2496–2504 (2002). [CrossRef]
  10. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett.21(24), 2023–2025 (1996). [CrossRef] [PubMed]
  11. Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett.30(7), 723–725 (2005). [CrossRef] [PubMed]
  12. L. Ding, R. Blackwell, J. F. Künzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,” Opt. Express14(24), 11901–11909 (2006). [CrossRef] [PubMed]
  13. L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers,” Opt. Express16(26), 21914–21921 (2008). [CrossRef] [PubMed]
  14. L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, N. Anderson, D. Jani, J. Linhardt, R. I. Blackwell, and J. F. Künzler, “Micro-Raman spectroscopy of refractive index microstructures in silicone-based hydrogel polymers created by high-repetition-rate femtosecond laser micromachining,” J. Opt. Soc. Am. B26(4), 595–602 (2009). [CrossRef]
  15. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005), Chap. 5.
  16. A. Guirao, J. Tejedor, and P. Artal, “Corneal aberrations before and after small-incision cataract surgery,” Invest. Ophthalmol. Vis. Sci.45(12), 4312–4319 (2004). [CrossRef] [PubMed]
  17. L. Xu, W. H. Knox, and K. R. Huxlin, “Exogenous and endogenous two-photon absorption for Intra-tissue Refractive Index Shaping (IRIS) in live corneal tissue [Invited],” Opt. Mater. Express1, 1159–1164 (2011) (feature issue on nonlinear optics).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited