OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 8 — Dec. 1, 2011
  • pp: 1447–1456

Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12 μm

Philipp Koopmann, Samir Lamrini, Karsten Scholle, Michael Schäfer, Peter Fuhrberg, and Günter Huber  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 8, pp. 1447-1456 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (879 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present spectroscopic investigations and the first laser operation of Ho:Lu2O3. Laser operation was obtained with two different setups at room temperature: In a 1.9 μm diode pumped setup a maximum output power of 15 W was achieved. With a Tm-fiber laser pumped setup the maximum output power was 5.2 W and the slope efficiency was 54% with respect to the absorbed pump power. Absorption measurements revealed absorption cross sections of up to 11.7 · 10−21 cm2 at 1928 nm. In the 2.1 μm range a maximum emission cross section of 4.5 · 10−21 cm2 at 2124 nm was determined, which remains the highest gain peak even for high inversions. The fluorescence lifetime of the 5I7-manifold was found to be 10 ms.

© 2011 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Laser Materials

Original Manuscript: September 22, 2011
Revised Manuscript: October 21, 2011
Manuscript Accepted: October 25, 2011
Published: November 3, 2011

Philipp Koopmann, Samir Lamrini, Karsten Scholle, Michael Schäfer, Peter Fuhrberg, and Günter Huber, "Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12 μm," Opt. Mater. Express 1, 1447-1456 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm Laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (Intech, Vukovar, Croatia, 2010), pp. 471–500.
  2. E. Lippert, S. Nicolas, G. Arisholm, K. Stenersen, and G. Rustad, “Midinfrared laser source with high power and beam quality,” Appl. Opt.45, 3839–3845 (2006). [CrossRef] [PubMed]
  3. T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron.23, 924–933 (1988). [CrossRef]
  4. G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron.32, 1645–1656 (1996). [CrossRef]
  5. D.Y. Shen, A. Abdolvand, L.J. Cooper, and W.A. Clarkson, “Efficient Ho : YAG laser pumped by a cladding pumped tunable Tm : silica-fibre laser,” Appl. Phys. B79, 559–561 (2004). [CrossRef]
  6. X. Mu, H.E. Meissner, and H.-C. Lee, “Thulium fiber laser 4-pass end-pumped high efficiency 2.09-μm Ho:YAG Laser,” in “Proceedings of CLEO/QUELS 2009,” (2009), CWH1.
  7. C.D. Nabors, J. Ochoa, T.Y. Fan, A. Sanchez, H.K. Choi, and G.W. Turner, “Ho : YAG laser pumped by 1.9-μm diode lasers,” IEEE J. Quantum Electron.31, 1603–1605 (1995). [CrossRef]
  8. S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B (2011). DOI: [CrossRef]
  9. R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011). [CrossRef]
  10. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett.35, 2302–2304 (2010). [CrossRef] [PubMed]
  11. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36, 948–950 (2011). [CrossRef] [PubMed]
  12. L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int.26, 589–592 (2000). [CrossRef]
  13. J. Mohr, M. Mond, V. Peters, E. Heumann, K. Petermann, and G. Huber, “Spectroscopy and continous wave lasing of Yb,Ho:Sc2O3 and Tm,Ho:Sc2O3 at 2.1 mm,” DPG-Frühjahrstagung 2001, Q 33.4, available at http://old.dpg-tagungen.de/archive/2001/html/q_33.html (2001).
  14. G. A. Newburgh, A. Word-Daniels, A. Michael, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Resonantly diode-pumped Ho3+:Y2O3 ceramic 2.1 μm laser,” Opt. Express19, 3604–3611 (2011). [CrossRef] [PubMed]
  15. M. Galceran, M. C. Pujol, P. Gluchowski, W. Strek, J. J. Carvajal, X. Mateos, M. Aguilo, and F. Diaz, “A promising Lu2–xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93, 3764–3772 (2010). [CrossRef]
  16. F. Schmid and D. Viehnicki, “Growth of sapphire disks from the melt by a gradient furnace technique,” J. Am. Ceram. Soc.53, 528–529 (1970). [CrossRef]
  17. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth310, 1934–1938 (2008). [CrossRef]
  18. M. Fechner, F. Reichert, P. Koopmann, K. Petermann, and G. Huber, “Spectroscopy of Ho:Lu2O3 with respect to the realization of a visible laser,” in Proceedings of CLEO Europe EQEC 2011 (2011), CA8.4.
  19. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev.136, A954–A957 (1964). [CrossRef]
  20. V. Peters, “Growth and spectroscopy of Ytterbium-doped sesquioxides,” PhD thesis (University of Hamburg, Shaker, 2001).
  21. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28, 2619–2630 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited