OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 8 — Dec. 1, 2011
  • pp: 1471–1477

Liquid crystal infiltrated waveguide with distributed Bragg reflectors

Dong-Po Cai, Hung-Yi Pan, Ji-Fang Tsai, Hua-Kung Chiu, Shan-Chi Nian, Sheng Hsiung Chang, Chii-Chang Chen, and Chien-Chieh Lee  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 8, pp. 1471-1477 (2011)
http://dx.doi.org/10.1364/OME.1.001471


View Full Text Article

Enhanced HTML    Acrobat PDF (5130 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The electrically tunable band-pass filter in the visible light region is demonstrated by the liquid-crystal infiltrated waveguide formed by the distributed Bragg reflectors with the length of 3 mm. As the white light source is launched in the waveguide, by applying the external voltages from 0 to 30 Vrms, the dynamic control of filter characteristics can be achieved to tune the color of the output light from white light to red, yellow or green. The intensity of the output light can also be attenuated by applying the voltage. The 25 dB attenuation can be achieved as the applied voltage is as low as 9 Vrms.

© 2011 OSA

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(230.3720) Optical devices : Liquid-crystal devices
(230.7370) Optical devices : Waveguides

ToC Category:
Liquid Crystals

History
Original Manuscript: September 7, 2011
Revised Manuscript: September 25, 2011
Manuscript Accepted: September 25, 2011
Published: November 3, 2011

Virtual Issues
Liquid Crystal Materials for Photonic Applications (2011) Optical Materials Express

Citation
Dong-Po Cai, Hung-Yi Pan, Ji-Fang Tsai, Hua-Kung Chiu, Shan-Chi Nian, Sheng Hsiung Chang, Chii-Chang Chen, and Chien-Chieh Lee, "Liquid crystal infiltrated waveguide with distributed Bragg reflectors," Opt. Mater. Express 1, 1471-1477 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-8-1471


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Shellan, P. Agmon, P. Yeh, and A. Yariv, “Statistical analysis of Bragg reflectors,” J. Opt. Soc. Am.68(1), 18–27 (1978). [CrossRef]
  2. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986). [CrossRef]
  3. D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett.85(16), 3477–3479 (2004). [CrossRef]
  4. H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gas and liquids,” IEEE J. Sel. Top. Quantum Electron.11(2), 519–527 (2005). [CrossRef]
  5. R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “Integrated optofluidic Mach-Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett.93(1), 011106 (2008). [CrossRef]
  6. D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A.101(34), 12434–12438 (2004). [CrossRef] [PubMed]
  7. W. Risk, H. Kim, R. Miller, H. Temkin, and S. Gangopadhyay, “Optical waveguides with an aqueous core and a low-index nanoporous cladding,” Opt. Express12(26), 6446–6455 (2004). [CrossRef] [PubMed]
  8. A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron.42(10), 1084–1090 (2006). [CrossRef]
  9. A. R. Hawkins and H. Schmidt, “Optofluidic waveguides: II. Fabrication and structures,” Microfluid. Nanofluid.4(1-2), 17–32 (2008). [CrossRef] [PubMed]
  10. H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid.4(1-2), 3–16 (2008). [CrossRef] [PubMed]
  11. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express11(20), 2589–2596 (2003). [CrossRef] [PubMed]
  12. F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett.85(12), 2181–22183 (2004). [CrossRef]
  13. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett.17(4), 819–821 (2005). [CrossRef]
  14. T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical field on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol.17(5), 985–991 (2006). [CrossRef]
  15. T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol.18(10), 3061–3069 (2007). [CrossRef]
  16. D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “Switchable liquid-crystal optical channel wavguide on silicon,” IEEE J. Quantum Electron.46(5), 762–768 (2010). [CrossRef]
  17. D. P. Cai, S. C. Nien, H. K. Chiu, C. C. Chen, and C. C. Lee, “Electrically tunable liquid crystal waveguide attenuators,” Opt. Express19(12), 11890–11896 (2011). [CrossRef] [PubMed]
  18. K. Neyts, W. Decort, H. Azarinia, P. Vanbrabant, R. James, and J. Beeckman, “Liquid crystals in waveguides for tuning and sensing,” Photonics Lett. Poland3(1),17–19 (2011).
  19. V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science279(5359), 2077–2080 (1998). [CrossRef] [PubMed]
  20. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett.29(17), 1974–1976 (2004). [CrossRef] [PubMed]
  21. V. J. Cadarso, A. Llobera, C. Fernandez-Sanchez, M. Darder, and C. Dominguez, “Hollow waveguide-based full-field absorbance biosensor,” Sens. Actuators B Chem.139(1), 143–149 (2009). [CrossRef]
  22. H. A. Macleod, Thin-Film Optical Filters (Macmillan, 1986), Chap. 2.
  23. M. Green and S. J. Madden, “Low loss nematic liquid crystal cored fiber waveguides,” Appl. Opt.28(24), 5202–5203 (1989). [CrossRef] [PubMed]
  24. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express12(24), 5857–5871 (2004). [CrossRef] [PubMed]
  25. G. P. Bryan-Brown, E. L. Wood, and I. C. Sage, “Weak surface anchoring of liquid crystals,” Nature399(6734), 338–340 (1999). [CrossRef]
  26. M. Barón, “Definitions of basic terms relating to low-molar-mass and polymer liquid crystals,” Pure Appl. Chem.73(5), 845–895 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited