OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 1 — Jan. 1, 2012
  • pp: 11–19

Second order DFB lasing using reusable grating inscribed in azobenzene-containing material

Leonid M. Goldenberg, Victor Lisinetskii, Yuri Gritsai, Joachim Stumpe, and Sigurd Schrader  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 1, pp. 11-19 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1694 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A distributed-feedback laser, operating in the spectral range of 590-670 nm is reported. The laser device is based on surface relief grating providing a second order DFB structure. The surface relief grating is inscribed in an azobenzene-containing material and an active layer realized in high refractive index poly(phenylquinoxaline) matrix. It is shown that the design of laser device provides for the possibility of simple replacement of an active layer. This allows, in particular, laser wavelength tuning without rewriting of the surface relief grating.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(140.3380) Lasers and laser optics : Laser materials
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(160.5470) Materials : Polymers
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Laser Materials

Original Manuscript: October 10, 2011
Revised Manuscript: November 16, 2011
Manuscript Accepted: November 28, 2011
Published: December 1, 2011

Leonid M. Goldenberg, Victor Lisinetskii, Yuri Gritsai, Joachim Stumpe, and Sigurd Schrader, "Second order DFB lasing using reusable grating inscribed in azobenzene-containing material," Opt. Mater. Express 2, 11-19 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Ichimura, “Photoalignment of Liquid-Crystal Systems,” Chem. Rev. 100(5), 1847–1874 (2000). [CrossRef] [PubMed]
  2. A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002). [CrossRef] [PubMed]
  3. N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999). [CrossRef]
  4. Y. Zhao and T. Ikeda, eds., Smart Light-Responsive Materials. Azobenzene-Containing Polymers and Liquid Crystals (Wiley, 2009).
  5. K. Harada, M. Itoh, T. Yatagai, and S.-i. Kamemaru, “Application of Surface Relief Hologram Using Azobenzene Containing Polymer Film,” Opt. Rev. 12(2), 130–134 (2005). [CrossRef]
  6. D. Sakai, K. Harada, S.-i. Kamemaru, M. A. El-Morsy, M. Itoh, and T. Yatagai, “Direct Fabrication of Surface Relief Holographic Diffusers in Azobenzene Polymer Films,” Opt. Rev. 12(5), 383–386 (2005). [CrossRef]
  7. A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater. (Deerfield Beach Fla.) 23(36), 4174–4177 (2011). [CrossRef] [PubMed]
  8. O. Kulikovska, L. M. Goldenberg, and J. Stumpe, “Supramolecular Azobenzene-Based Materials for Optical Generation of Microstructures,” Chem. Mater. 19(13), 3343–3348 (2007). [CrossRef]
  9. L. M. Goldenberg, O. Kulikovska, and J. Stumpe, “Thermally stable holographic surface relief gratings and switchable optical anisotropy in films of an azobenzene-containing polyelectrolyte,” Langmuir 21(11), 4794–4796 (2005). [CrossRef] [PubMed]
  10. L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, and J. Stumpe, “Extremely high patterning efficiency in easily made azobenzene-containing polymer films,” J. Mater. Chem. 19(34), 6103–6105 (2009). [CrossRef]
  11. L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, and J. Stumpe, “New materials with detachable azobenzene: effective, colourless and extremely stable surface relief gratings,” J. Mater. Chem. 19(43), 8068–8071 (2009). [CrossRef]
  12. L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Thin layers of low molecular azobenzene materials with effective light-induced mass transport,” Langmuir 26(4), 2214–2217 (2010). [CrossRef] [PubMed]
  13. L. M. Goldenberg, L. Kulikovsky, Y. Gritsai, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Very efficient surface relief holographic materials based on azobenzene-containing epoxy resins cured in films,” J. Mater. Chem. 20(41), 9161–9171 (2010). [CrossRef]
  14. L. M. Goldenberg, Y. Gritsai, and J. Stumpe, “Efficient surface relief grating generated in azobenzene-containing material using He-Ne laser,” J. Opt. 13(7), 075601 (2011). [CrossRef]
  15. J. Gao, Y. He, H. Xu, B. Song, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-Containing Supramolecular Polymer Films for Laser-Induced Surface Relief Gratings,” Chem. Mater. 19(1), 14–17 (2007). [CrossRef]
  16. N. Zettsu, T. Ogasawara, N. Mizoshita, S. Nagano, and T. Seki, “Photo-Triggered Surface Relief Grating Formation in Supramolecular Liquid Crystalline Polymer Systems with Detachable Azobenzene Units,” Adv. Mater. (Deerfield Beach Fla.) 20(3), 516–521 (2008). [CrossRef]
  17. Q. Zhang, C. G. Bazuin, and C. J. Barrett, “Simple Spacer-Free Dye-Polyelectrolyte Ionic Complex: Side-Chain Liquid Crystal Order with High and Stable Photoinduced Birefringence,” Chem. Mater. 20(1), 29–31 (2008). [CrossRef]
  18. Q. Zhang, X. Wang, C. J. Barrett, and C. G. Bazuin, “Spacer-Free Ionic Dye-Polyelectrolyte Complexes: Influence of Molecular Structure on Liquid Crystal Order and Photoinduced Motion,” Chem. Mater. 21(14), 3216–3227 (2009). [CrossRef]
  19. A. Priimagi, K. Lindfors, M. Kaivola, and P. Rochon, “Efficient surface-relief gratings in hydrogen-bonded polymer-azobenzene complexes,” ACS Appl. Mater. Interfaces 1(6), 1183–1189 (2009). [CrossRef] [PubMed]
  20. J. Vapaavuori, A. Priimagi, and M. Kaivola, “Photoinduced surface-relief gratings in films of supramolecular polymer–bisazobenzene complexes,” J. Mater. Chem. 20(25), 5260–5264 (2010). [CrossRef]
  21. T. Ubukata, T. Seki, and K. Ichimura, “Surface Relief Grating in Host-Guest Supramolecular Materials,” Adv. Mater. (Deerfield Beach Fla.) 12(22), 1675–1678 (2000). [CrossRef]
  22. Y. Shirota, “Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications,” J. Mater. Chem. 15(1), 75–93 (2005). [CrossRef]
  23. C. Chun, M.-J. Kim, D. Vak, and D. Y. Kim, “A novel azobenzene-based amorphous molecular material with a spiro linked bifluorene,” J. Mater. Chem. 13(12), 2904–2909 (2003). [CrossRef]
  24. T. Matsui, M. Ozaki, K. Yoshino, and F. Kajzar, “Fabrication of Flexible Distributed Feedback Laser Using Photoinduced Surface Relief Grating on Azo-Polymer Film as a Template,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1386–L1388 (2002). [CrossRef]
  25. S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene based surface relief gratings for thin film distributed feedback lasers,” Proc. SPIE 7722, 77221H (2010). [CrossRef]
  26. S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. (Deerfield Beach Fla.) 23(37), 4265–4269 (2011). [CrossRef] [PubMed]
  27. L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001). [CrossRef]
  28. T. Ubukata, T. Isoshima, and M. Hara, “Wavelength Programmable Organic Distributed Feedback Laser based on a Photoassisted Polymer Migration System,” Adv. Mater. (Deerfield Beach Fla.) 17(13), 1630–1633 (2005). [CrossRef]
  29. T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-Programmable Organic Distributed-Feedback Laser Using a Photoinduced Surface Relief Grating,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 445(1), 269–273 (2006). [CrossRef]
  30. J. Mysliwiec, L. Sznitko, A. Sobolewska, S. Bartkiewicz, and A. Miniewicz, “Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system,” Appl. Phys. Lett. 96(14), 141106 (2010). [CrossRef]
  31. H. Kogelnik and C. V. Shank, “Coupled-Wave Theory of Distributed Feedback Lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972). [CrossRef]
  32. T. Isoshima, E. Ito, T. Ubukata, and M. Hara, “Fluorescence Dynamics of Organic Laser Dyes in Azobenzene Polymer,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 444(1), 81–86 (2006). [CrossRef]
  33. L. M. Goldenberg, Y. Gritsai, O. Kulikovska, and J. Stumpe, “Three-dimensional planarized diffraction structures based on surface relief gratings in azobenzene materials,” Opt. Lett. 33(12), 1309–1311 (2008). [CrossRef] [PubMed]
  34. Y. Gritsai, L. M. Goldenberg, O. Kulikovska, and J. Stumpe, “3D structures using surface relief gratings of azobenzene materials,” J. Opt. A 10(12), 125304 (2008). [CrossRef]
  35. L. M. Goldenberg, Y. Gritsai, O. Sakhno, O. Kulikovska, and J. Stumpe, “All-optical fabrication of 2D, 3D and hierarchic structures using step-by-step approach and a single polymer phase mask,” Proc. First Mediterranean Photonics Conference, 28–30 (2008).
  36. Y. Gritsai, L. M. Goldenberg, O. Kulikovska, O. Sakhno, and J. Stumpe, “All-optical fabrication of 2D and 3D photonic micro-structures in polymeric materials,” Proc. SPIE 7716, 77161V (2010). [CrossRef]
  37. I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007). [CrossRef] [PubMed]
  38. S. Schrader, P. Imperia, N. Koch, G. Leising, and B. Falk, “Organic Light-emitting Devices Based on New Heterocyclic Compounds,” Proc. SPIE 3797, 209–220 (1999). [CrossRef]
  39. H. Rabbani-Haghighi, S. Forget, S. Chénais, and A. Siove, “Highly efficient, diffraction-limited laser emission from a vertical external-cavity surface-emitting organic laser,” Opt. Lett. 35(12), 1968–1970 (2010). [CrossRef] [PubMed]
  40. S. Schrader, D. Prescher, and V. Zauls, “New chromophores and polymers for second order nonlinear optics,” Proc. SPIE 3474, 160–171 (1998). [CrossRef]
  41. C. Flueraru, S. Schrader, V. Zauls, H. Motschmann, B. Stiller, and R. Kiebooms, “Ellipsometric and atomic force microscopic investigations on poly(para-phenylenevinylene)and poly(phenylquinoxaline) thin films,” Synth. Met. 111–112(1-2), 603–606 (2000). [CrossRef]
  42. A. Hayer, H. Bässler, B. Falk, and S. Schrader, “Delayed Fluorescence and Phosphorescence from Polyphenylquinoxalines,” J. Phys. Chem. A 106(46), 11045–11053 (2002). [CrossRef]
  43. V. Ksianzou, R. K. Velagapudi, B. Grimm, and S. Schrader, “Polarization-dependent optical characterization of poly(phenylquinoxaline) thin films,” J. Appl. Phys. 100(6), 063106 (2006). [CrossRef]
  44. K. Izuka, Elements of Photonics, Volume II: For Fiber and Integrated Optics (John Wiley & Sons, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited