OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 1 — Jan. 1, 2012
  • pp: 55–61

Azo-dye-doped absorbing photonic crystals with purely imaginary refractive index contrast and all-optically switchable diffraction properties

Y. J. Liu, H. T. Dai, Eunice S. P. Leong, J. H. Teng, and X. W. Sun  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 1, pp. 55-61 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1921 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a two-dimensional absorbing photonic crystal with a uniform real part of the refractive index, but a periodically modulated imaginary part. It was realized through back-filling the voids of a periodic array of azo-dye-doped polymeric disks with the same undoped polymers. The photonic crystals were characterized using the diffraction method. The experimental results showed that only the light in the spectral range where the azo-dye absorbed was diffracted, indicating that a purely absorbing photonic crystal was formed. This absorbing photonic crystal also showed switchable diffraction properties due to the trans-cis isomerization of the azo-dye under the light pump.

© 2011 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(160.2900) Materials : Optical storage materials
(160.5320) Materials : Photorefractive materials
(230.1150) Optical devices : All-optical devices

ToC Category:
Optical Storage Media

Original Manuscript: November 10, 2011
Revised Manuscript: November 30, 2011
Manuscript Accepted: December 2, 2011
Published: December 7, 2011

Y. J. Liu, H. T. Dai, Eunice S. P. Leong, J. H. Teng, and X. W. Sun, "Azo-dye-doped absorbing photonic crystals with purely imaginary refractive index contrast and all-optically switchable diffraction properties," Opt. Mater. Express 2, 55-61 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  3. M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 046604 (2005). [CrossRef] [PubMed]
  4. O. El Daif, E. Drouard, G. Gomard, A. Kaminski, A. Fave, M. Lemiti, S. Ahn, S. Kim, P. Roca I Cabarrocas, H. Jeon, and C. Seassal, “Absorbing one-dimensional planar photonic crystal for amorphous silicon solar cell,” Opt. Express 18(S3Suppl 3), A293–A299 (2010). [CrossRef] [PubMed]
  5. M. D. B. Charlton, S. W. Roberts, and G. J. Parker, “Guided mode analysis, and fabrication of a 2-dimensional visible photonic band structure confined within a planar semiconductor waveguide,” Mater. Sci. Eng. B 49(2), 155–165 (1997). [CrossRef]
  6. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001). [CrossRef] [PubMed]
  7. E. Özbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, and K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64(16), 2059–2061 (1994). [CrossRef]
  8. A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000). [CrossRef] [PubMed]
  9. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003). [CrossRef]
  10. D. N. Sharp, M. Campbell, E. R. Dedman, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Photonic crystals for the visible spectrum by holographic lithography,” Opt. Quantum Electron. 34(1/3), 3–12 (2002). [CrossRef]
  11. L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams,” J. Opt. Soc. Am. A 19(11), 2238–2244 (2002). [CrossRef] [PubMed]
  12. I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667–1669 (2003). [CrossRef]
  13. Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystals fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006). [CrossRef]
  14. Y. J. Liu and X. W. Sun, “Electrically tunable three-dimensional holographic photonic crystals made of polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46(10A), 6634–6638 (2007). [CrossRef]
  15. Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Electrically switchable two-dimensional photonic crystals made of polymer-dispersed liquid crystals based on the Talbot self-imaging effect,” Appl. Phys. B 104(3), 659–663 (2011). [CrossRef]
  16. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000). [CrossRef]
  17. M. C. Gupta, Handbook of Photonics (CRC Press, 1997).
  18. T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995). [CrossRef] [PubMed]
  19. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express 18(8), 8697–8704 (2010). [CrossRef] [PubMed]
  20. L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichormatic switching,” Adv. Mater. (Deerfield Beach Fla.) 22(21), 2316–2319 (2010). [CrossRef]
  21. L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011). [CrossRef]
  22. I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities of Methyl-Red and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 1–13 (2001). [CrossRef]
  23. T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, “Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure,” Adv. Mater. (Deerfield Beach Fla.) 15(3), 201–205 (2003). [CrossRef]
  24. Y. J. Liu, H. T. Dai, and X. W. Sun, “Holographic fabrication of azo-dye-functionalized photonic structures,” J. Mater. Chem. 21(9), 2982–2986 (2011). [CrossRef]
  25. V. Ferri, M. Elbing, G. Pace, M. D. Dickey, M. Zharnikov, P. Samorì, M. Mayor, and M. A. Rampi, “Light-powered electrical switch based on cargo-lifting azobenzene monolayers,” Angew. Chem. Int. Ed. Engl. 47(18), 3407–3409 (2008). [CrossRef] [PubMed]
  26. A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004). [CrossRef] [PubMed]
  27. M. Shian Li, A. Y.-G. Fuh, and S.-T. Wu, “Optical switch of diffractive light from a BCT photonic crystal based on HPDLC doped with azo component,” Opt. Lett. 36(19), 3864–3866 (2011). [CrossRef] [PubMed]
  28. Y.-C. Su, C.-C. Chu, W.-T. Chang, and V. K. S. Hsiao, “Characterization of optically switchable holographic polymer-dispersed liquid crystal transmission gratings,” Opt. Mater. 34(1), 251–255 (2011). [CrossRef]
  29. C. Decker and K. Zahouily, “Photodegradation and photooxidation of thermoset and UV-cured acrylate polymers,” Polym. Degrad. Stabil. 64(2), 293–304 (1999). [CrossRef]
  30. A. E. Rydholm, C. N. Bowman, and K. S. Anseth, “Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial,” Biomaterials 26(22), 4495–4506 (2005). [CrossRef] [PubMed]
  31. G. J. Lee, D. Kim, and M. Lee, “Photophysical properties and photoisomerization processes of Methyl Red embedded in rigid polymer,” Appl. Opt. 34(1), 138–143 (1995). [CrossRef] [PubMed]
  32. Y. J. Liu, Y. B. Zheng, J. Shi, H. Huang, T. R. Walker, and T. J. Huang, “Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals,” Opt. Lett. 34(15), 2351–2353 (2009). [CrossRef] [PubMed]
  33. L. De Sio and C. Umeton, “Dual-mode control of light by two-dimensional periodic structures realized in liquid-crystalline composite materials,” Opt. Lett. 35(16), 2759–2761 (2010). [CrossRef] [PubMed]
  34. Y. J. Liu, Y. B. Zheng, J. Liou, I.-K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photo-switchable gratings and Au nandisk arrays,” J. Phys. Chem. C 115(15), 7717–7722 (2011). [CrossRef]
  35. L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003). [CrossRef]
  36. W. Lu, S. Wu, F. Zeng, T. Tang, S. Yao, W. She, and D. Luo, “Transient gratings in azo-dye-doped poly(methyl methacrylate) polymeric films,” Appl. Phys. B 78(5), 623–627 (2004). [CrossRef]
  37. N. Tamai and H. Miyasaka, “Ultrafast dynamics of photochromic systems,” Chem. Rev. 100(5), 1875–1890 (2000). [CrossRef] [PubMed]
  38. I.-C. Khoo, J.-H. Park, and J. D. Liou, “Theory and experimental studies of all-optical transmission switching in a twist-alignment dye-doped nematic liquid crystal,” J. Opt. Soc. Am. B 25(11), 1931–1937 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited