OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 10 — Oct. 1, 2012
  • pp: 1306–1313

Extending the afterglow in CaAl2O4:Eu,Nd persistent phosphors by electron beam annealing

Philippe F. Smet, Nursen Avci, Koen Van den Eeckhout, and Dirk Poelman  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 10, pp. 1306-1313 (2012)
http://dx.doi.org/10.1364/OME.2.001306


View Full Text Article

Enhanced HTML    Acrobat PDF (1295 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

White, well-crystallized and strongly persistent luminescent CaAl2O4:Eu2+,Nd3+ powders were obtained by electron-beam annealing. The electron-beam annealing resulted in a full reduction of Eu3+ to Eu2+, based on the luminescence spectra. Considerable grain growth was observed and the annealed powder crystallized in the monoclinic phase of calcium aluminate. The afterglow intensity was about three times this of commercially available powder and the afterglow duration extended to 10 hours, considering the 0.32mcd/m2 photopic threshold level.

© 2012 OSA

OCIS Codes
(160.2900) Materials : Optical storage materials
(160.5690) Materials : Rare-earth-doped materials
(250.5230) Optoelectronics : Photoluminescence
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: June 26, 2012
Revised Manuscript: August 27, 2012
Manuscript Accepted: August 30, 2012
Published: August 31, 2012

Citation
Philippe F. Smet, Nursen Avci, Koen Van den Eeckhout, and Dirk Poelman, "Extending the afterglow in CaAl2O4:Eu,Nd persistent phosphors by electron beam annealing," Opt. Mater. Express 2, 1306-1313 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-10-1306


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express2(3), 261–268 (2012). [CrossRef]
  2. P. F. Smet, D. Poelman, and M. P. Hehlen, “Focus issue introduction: persistent phosphors,” Opt. Mater. Express2(4), 452–454 (2012). [CrossRef]
  3. H. H. Li, S. Yin, and T. Sato, “Novel luminescent photocatalytic deNO(x) activity of CaAl2O4:(Eu, Nd)/TiO2-xNy composite,” Appl. Catal. B106(3-4), 586–591 (2011). [CrossRef]
  4. Z. W. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2012). [CrossRef]
  5. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996). [CrossRef]
  6. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent Luminescence in Eu2+-Doped Compounds: A Review,” Materials3(4), 2536–2566 (2010). [CrossRef]
  7. H. F. Brito, J. Holsa, T. Laamanen, M. Lastusaari, M. Malkamaki, and L. C. V. Rodrigues, “Persistent luminescence mechanisms: human imagination at work,” Opt. Mater. Express2(4), 371–381 (2012). [CrossRef]
  8. T. Aitasalo, J. Holsa, M. Kirm, T. Laamanen, M. Lastusaari, J. Niittykoski, J. Raud, and R. Valtonen, “Persistent luminescence and synchrotron radiation study of the Ca2MgSi2O7:Eu2+, R3+ materials,” Radiat. Meas.42(4-5), 644–647 (2007). [CrossRef]
  9. J. Hölsa, T. Laamanen, M. Lastusaari, M. Malkamaki, E. Welter, and D. A. Zajac, “Valence and environment of rare earth ions in CaAl2O4: Eu2+, R3+ persistent luminescence materials,” Spectrochim. Acta, B At. Spectrosc.65(4), 301–305 (2010). [CrossRef]
  10. T. Aitasalo, J. Hölsa, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006). [CrossRef] [PubMed]
  11. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in rare-earth codoped Ca2Si5N8:Eu2+,” J. Lumin.129(10), 1140–1143 (2009). [CrossRef]
  12. C. K. Chang, J. Xu, L. Jiang, D. L. Mao, and W. J. Ying, “Luminescence of long-lasting CaAl2O4: Eu2+,Nd3+ phosphor by co-precipitation method,” Mater. Chem. Phys.98(2-3), 509–513 (2006). [CrossRef]
  13. J. Hölsa, H. Jungner, M. Lastusaari, and J. Niittykoski, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4: Eu2+,” J. Alloy. Comp.323-324, 326–330 (2001). [CrossRef]
  14. Y. H. Lin, Z. L. Tang, Z. T. Zhang, and C. W. Nan, “Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors,” J. Eur. Ceram. Soc.23(1), 175–178 (2003). [CrossRef]
  15. T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari, and J. Niittykoski, “Sol-gel processed Eu2+-doped alkaline earth aluminates,” J. Alloy. Comp.341(1-2), 76–78 (2002). [CrossRef]
  16. N. Avci, K. Korthout, M. A. Newton, P. F. Smet, and D. Poelman, “Valence states of europium in CaAl2O4:Eu phosphors,” Opt. Mater. Express2(3), 321–330 (2012). [CrossRef]
  17. X. Y. Chen, Z. Li, S. P. Bao, and P. T. Ji, “Porous MAl2O4:Eu2+ (Eu3+), Dy3+ (M = Sr, Ca, Ba) phosphors prepared by Pechini-type sol-gel method: The effect of solvents,” Opt. Mater.34(1), 48–55 (2011). [CrossRef]
  18. S. W. Choi and S. H. Hong, “Size and morphology control by planetary ball milling in CaAl2O4:Eu2+ phosphors prepared by Pechini method and their luminescence properties,” Mater. Sci. Eng., B171(1-3), 69–72 (2010). [CrossRef]
  19. X. Q. Piao, K. Machida, T. Horikawa, and B. G. Yun, “Acetate reduction synthesis of Sr2Si5N8:Eu2+ phosphor and its luminescence properties,” J. Lumin.130(1), 8–12 (2010). [CrossRef]
  20. T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari, and J. Niittykoski, “Comparison of sol-gel and solid-state prepared Eu2+ doped calcium aluminates,” Mater. Sci.20, 15–20 (2002).
  21. T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004). [CrossRef]
  22. P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc.152(7), H107–H110 (2005). [CrossRef]
  23. K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011). [CrossRef]
  24. M. S. Rea, J. D. Bullough, J. P. Freyssinier-Nova, and A. Bierman, “A proposed unified system of photometry,” Lighting Res. Tech.36(2), 85–111 (2004). [CrossRef]
  25. D. Poelman, N. Avci, and P. F. Smet, “Measured luminance and visual appearance of multi-color persistent phosphors,” Opt. Express17(1), 358–364 (2009). [CrossRef] [PubMed]
  26. M. F. Zawrah and N. M. Khalil, “Synthesis and characterization of calcium aluminate nanoceramics for new applications,” Ceram. Int.33(8), 1419–1425 (2007). [CrossRef]
  27. X. M. Teng, Y. H. Liu, Y. Z. Liu, Y. S. Hu, H. Q. He, and W. D. Zhuang, “Luminescence properties of Tm3+ co-doped Sr2Si5N8:Eu2+ red phosphor,” J. Lumin.130(5), 851–854 (2010). [CrossRef]
  28. B. Lei, K. Machida, T. Horikawa, H. Hanzawa, N. Kijima, Y. Shimomura, and H. Yamamoto, “Reddish-Orange Long-Lasting Phosphorescence of Ca2Si5N8:Eu2+,Tm3+ Phosphor,” J. Electrochem. Soc.157(6), J196–J201 (2010). [CrossRef]
  29. F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited