OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 10 — Oct. 1, 2012
  • pp: 1320–1328

Luminescence from bismuth-germanate glasses and its manipulation through oxidants

A. Winterstein, S. Manning, H. Ebendorff-Heidepriem, and L. Wondraczek  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 10, pp. 1320-1328 (2012)
http://dx.doi.org/10.1364/OME.2.001320


View Full Text Article

Enhanced HTML    Acrobat PDF (890 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the luminescence properties of bismuth-germanate glasses in which the speciation of bismuth is controlled via addition of CeO2 as an oxidant. A glass system with the composition (70.5-x)GeO2 – 24.5Bi2O3 – 5WO3: xCeO2, with x = 0...2.0, is analyzed in terms of optical properties and redox states of bismuth and cerium. We show that optical transmission and luminescence in the visible to near-infrared (NIR) spectral range can be adjusted by the ratio of bismuth and cerium. Specifically, ultra-broad NIR luminescence spanning the range of 1000 – 1600 nm can be obtained for x ≤ 0.1. This is of particular interest for application of this type of glass in fiber-optical amplifiers where no additional dopants would be required.

© 2012 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(140.4480) Lasers and laser optics : Optical amplifiers
(160.2540) Materials : Fluorescent and luminescent materials
(160.2750) Materials : Glass and other amorphous materials

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: July 11, 2012
Revised Manuscript: August 13, 2012
Manuscript Accepted: August 14, 2012
Published: August 31, 2012

Citation
A. Winterstein, S. Manning, H. Ebendorff-Heidepriem, and L. Wondraczek, "Luminescence from bismuth-germanate glasses and its manipulation through oxidants," Opt. Mater. Express 2, 1320-1328 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-10-1320


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1(1), 74–86 (2010). [CrossRef]
  2. M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009). [CrossRef] [PubMed]
  3. J. Lucas, “Infrared fibers,” Infrared Phys.25(1-2), 277–281 (1985). [CrossRef]
  4. W. H. Dumbaugh and J. C. Lapp, “Heavy metal oxide glasses,” J. Am. Ceram. Soc.75(9), 2315–2326 (1992). [CrossRef]
  5. D. L. Wood, K. Nassau, and D. L. Chadwick, “Optical properties of new oxide glasses with potential for long-wavelength optical fibers,” Appl. Opt.21(23), 4276–4279 (1982). [CrossRef] [PubMed]
  6. S. S. Rojas, J. E. De Souza, M. R. B. Andreeta, and A. C. Hernandes, “Influence of ceria addition on thermal properties and local structure of bismuth germanate glasses,” J. Non-Cryst. Solids356(52-54), 2942–2946 (2010). [CrossRef]
  7. M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009). [CrossRef] [PubMed]
  8. M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett.35(15), 2544–2546 (2010). [CrossRef] [PubMed]
  9. M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett.34(19), 2885–2887 (2009). [CrossRef] [PubMed]
  10. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys.40(Part 2, No. 3B), L279–L281 (2001). [CrossRef]
  11. R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express20(3), 2562–2571 (2012). [CrossRef] [PubMed]
  12. S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics,” J. Ceram. Soc. Jpn.115(1340), 259–263 (2007). [CrossRef]
  13. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett.33(13), 1488–1490 (2008). [CrossRef] [PubMed]
  14. K. H. Nielsen, M. M. Smedskjaer, M. Peng, Y. Z. Yue, L. Wondraczek, communicated to J. Non-Cryst. Solids (2012).
  15. W. A. Weyl, Coloured Glasses, 5th ed. (Sheffield: Society of Glass Technology, 1999).
  16. M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting bismuth centers,” Opt. Express18(12), 12852–12863 (2010). [CrossRef] [PubMed]
  17. X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater.33(1), 14–18 (2010). [CrossRef]
  18. M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009). [CrossRef]
  19. V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008). [CrossRef]
  20. K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999). [CrossRef]
  21. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005). [CrossRef] [PubMed]
  22. M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011). [CrossRef] [PubMed]
  23. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011). [CrossRef]
  24. M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem.19(5), 627–630 (2009). [CrossRef]
  25. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses,” Opt. Express13(5), 1635–1642 (2005). [CrossRef] [PubMed]
  26. S. Khonthon, S. Murimoto, Y. Arai, and Y. Ohishi, “Near infrared luminescence from Bi-doped soda lime silicate glasses,” Suranaree J. Sci. Technol.14, 141–146 (2007).
  27. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009). [CrossRef] [PubMed]
  28. W. Wang, Q. Yan, J. Ren, G. Chen, N. Da, and L. Wondraczek, “Ultrabroad near-infrared photoluminescence from Bi/Dy/Tm co-doped chalcohalide glasses,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52(6), 221–224 (2011).
  29. J. D. Barrie, L. A. Momoda, B. Dunn, D. Gourier, G. Aka, and D. Vivien, “ESR and optical spectroscopy of Ce3+: β″-alumina,” J. Solid State Chem.86(1), 94–100 (1990). [CrossRef]
  30. T. Inoue, T. Honma, V. Dimitrov, and T. Komatsu, “Approach to thermal properties and electronic polarizability from average single bond strength in ZnO-Bi2O3-B2O3 glasses,” J. Solid State Chem.183(12), 3078–3085 (2010). [CrossRef]
  31. V. Dimitrov and T. Komatsu, “Average single bond strength and optical basicity of Na2O-GeO2 glasses,” J. Ceram. Soc. Jpn.117(1370), 1105–1111 (2009). [CrossRef]
  32. V. Dimitrov and T. Komatsu, “An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength,” J. Univ. Chem. Technol. Metall.45, 219–250 (2010).
  33. H. Bach, F. Baucke, and D. Krause, Electrochemistry of Glasses and Glass Melts, Including Glass Electrodes (Springer, 2001), p. 293.
  34. G. Chen, S. Baccaro, A. Cecilia, Y. Du, M. Montecchi, J. Nie, S. Wang, and Y. Zhang, “Ultraviolet and visible transmission spectra of heavy germanate glasses containing Sn2+ and Ce3+,” J. Non-Cryst. Solids326-327, 343–347 (2003). [CrossRef]
  35. N. Haage, K. H. Hellwege, J. Jäger, and G. Schaack, “Absorptionsspektrum des Ce3+-ions und Schwingungsspektrum im CeCl3·7H2O und CeCl3·7D2O,” Phys. Kondens. Mater.10, 144–151 (1969).
  36. S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008). [CrossRef]
  37. H. You, T. Hayakawa, and M. Nogami, “Upconversion luminescence of Al2O3–SiO2:Ce3+ glass by femtosecond laser irradiation,” Appl. Phys. Lett.85(16), 3432–3434 (2004). [CrossRef]
  38. O. Shestakov, R. Breidohr, H. Demes, K. D. Setzer, and E. H. Fink, “Electronic states and spectra of BiO,” J. Mol. Spectrosc.190(1), 28–77 (1998). [CrossRef] [PubMed]
  39. L. Su, J. Yu, P. Zhou, H. Li, L. Zheng, Y. Yang, F. Wu, H. G. Xia, and J. Xu, “Broadband near-infrared luminescence in γ-irradiated Bi-doped α-BaB2O4 single crystals,” Opt. Lett.34(16), 2504–2506 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited