OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 10 — Oct. 1, 2012
  • pp: 1367–1377

Selective enhancement of infrared absorption with metal hole arrays

Yoshiaki Nishijima, Hiroki Nigorinuma, Lorenzo Rosa, and Saulius Juodkazis  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 10, pp. 1367-1377 (2012)
http://dx.doi.org/10.1364/OME.2.001367


View Full Text Article

Enhanced HTML    Acrobat PDF (2512 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use a surface-enhanced infrared absorption (SEIRA) spectroscopy, a useful sensing and surface analysis method complimentary to the Raman scattering spectroscopy, for the individual enhancement of specific molecular vibration bands and fingerprinting of molecular vibrations. SEIRA spectroscopic measurement using the metal hole array (MHA) is demonstrated with high spectral selectivity. The molecular IR absorption peaks are enhanced up to 10 times at the transmission peak of MHA structure when electromagnetic field enhancement is localized on the walls inside the holes. Experimental and numerical simulations results are in a good qualitative agreement. Selective IR band enhancement can be used for identification of specific molecules within complex mixtures and it can be extended to the longer wavelengths at THz molecular bands.

© 2012 OSA

OCIS Codes
(240.6490) Optics at surfaces : Spectroscopy, surface
(240.6680) Optics at surfaces : Surface plasmons
(300.6270) Spectroscopy : Spectroscopy, far infrared

ToC Category:
Plasmonics

History
Original Manuscript: May 23, 2012
Revised Manuscript: August 15, 2012
Manuscript Accepted: September 4, 2012
Published: September 7, 2012

Citation
Yoshiaki Nishijima, Hiroki Nigorinuma, Lorenzo Rosa, and Saulius Juodkazis, "Selective enhancement of infrared absorption with metal hole arrays," Opt. Mater. Express 2, 1367-1377 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-10-1367


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Nakanishi, K. J. M. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature460, 371–375 (2008). [CrossRef]
  2. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335–2339 (2005). [CrossRef] [PubMed]
  3. W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333, 1720–1723 (2011). [CrossRef] [PubMed]
  4. K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett.1, 657–662 (2010). [CrossRef]
  5. K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99, 011107 (2011). [CrossRef]
  6. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005). [CrossRef]
  7. Y. Nishijima and S. Akiyama, “Unusual optical properties of the Au/Ag alloy at the matching mole fraction,” Opt. Mater. Express2, 1226–1235 (2012). [CrossRef]
  8. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1113 (2009). [CrossRef] [PubMed]
  9. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008). [CrossRef]
  10. A. Roberts and L. Lin, “Substrate and aspect-ratio effects in resonant nanoaperture arrays,” Opt. Mater. Express1, 480–488 (2011). [CrossRef]
  11. T. J. Davis, M. Hentschel, N. Liu, and H. Giessen, “Analytical model of the three-dimensional plasmonic ruler,” ACS Nano6, 1291–1298 (2012). [CrossRef] [PubMed]
  12. Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett.1, 2327–2333 (2010). [CrossRef]
  13. F. S. Merkt, A. Erbe, and P. Leiderer, “Capped colloids as light-mills in optical traps,” New J. Phys.8, 216–224 (2006). [CrossRef]
  14. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87, 261114 (2005). [CrossRef]
  15. M. Osawa, “Dynamic process electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRA),” Bull. Chem. Soc. Jpn.70, 2861–2880 (1997). [CrossRef]
  16. N. Ohta, K. Nomura, and I. Yagi, “Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface-enhanced infrared absorption (SEIRA) spectroscopy,” Langmuir26, 18097–18104 (2010). [CrossRef] [PubMed]
  17. H. Miyatake, E. Hosono, M. Osawa, and T. Okada, “Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes,” Chem. Phys. Lett.428, 451–456 (2006). [CrossRef]
  18. H. Miyatake, S. Ye, and M. Osawa, “Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry,” Electrochem. Commun.4, 973–977 (2002). [CrossRef]
  19. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature351, 667–669 (1998). [CrossRef]
  20. E. Popov, M. Neviere, S. Enoch, and R. Reinisc, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62, 16100–16108 (2000). [CrossRef]
  21. H. J. Lezee and T. Thio, “Diffraction evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12, 3629–3650 (2004). [CrossRef]
  22. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010). [CrossRef]
  23. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical Transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun.239, 61–66 (2004). [CrossRef]
  24. H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005). [CrossRef] [PubMed]
  25. J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule-surface plasmon interactions in hole allays: enhanced absorption, refractive index changes, and all-optical switching,” Adv. Mater.18, 1267–1270 (2006). [CrossRef]
  26. N. Djaker, R. Hostein, E. Devaux, T. W. Ebbesen, H. Rigneault, and J. Wenger, “Surface enhanced Raman scattering on a single nanometric aperture,” J. Phys. Chem. C114, 16250–16256 (2010). [CrossRef]
  27. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House Publishers, 2005).
  28. E. D. Palik, ed., Handbook of Optical Constants of Solids, 3rd ed. (Academic Press, 1998).
  29. Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20, 11466–11477 (2012). [CrossRef] [PubMed]
  30. J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003). [CrossRef]
  31. V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, and A. V. Zayats, “Dispersing light with surface plasmon polaritonic crystals,” Phys. Rev. Lett.99, 083901 (2007). [CrossRef] [PubMed]
  32. E. G. Gamaly, “Optical phenomena on the interface between a conventional dielectric and a uniaxial medium with mixed metal-dielectric properties,” Phys. Rev. E51, 3556–3560 (1995). [CrossRef]
  33. L. Rosa, K. Sun, V. Mizeikis, S. Bauerdick, L. Peto, and S. Juodkazis, “3D-tailored gold nanoparticles for light field enhancement and harvesting over visible-IR spectral range,” J. Chem. Phys. C115, 5251–5256 (2011). [CrossRef]
  34. S. Juodkazis and L. Rosa, “Surface defect mediated electron hopping between nanoparticles separated by a nanogap,” Phys. Status Solidi (RRL)4, 244–246 (2010). [CrossRef]
  35. V. Mizeikis, S. Juodkazis, K. Sun, and H. Misawa, “Fabrication of frequency-selective surface structures by femtosecond laser ablation of gold films,” J. Laser Micro/Nanoeng.5, 115–120 (2010). [CrossRef]
  36. V. Mizeikis, S. Juodkazis, R. Tarozaitė, J. Juodkazytė, K. Juodkazis, and H. Misawa, “Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region,” Opt. Express15, 8454–8464 (2007). [CrossRef] [PubMed]
  37. L. Rosa, K. Sun, and S. Juodkazis, “Sierpinski fractal plasmonic nanoantennas,” Phys. Status Solidi (RRL)5, 175–177 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited