OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 10 — Oct. 1, 2012
  • pp: 1407–1415

Magnetic-electric interference in metal-dielectric-metal oligomers: generation of magneto-electric Fano resonance

J. Yang, M. Rahmani, J. H. Teng, and M. H. Hong  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 10, pp. 1407-1415 (2012)
http://dx.doi.org/10.1364/OME.2.001407


View Full Text Article

Enhanced HTML    Acrobat PDF (2930 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The existence of magnetic resonance in designed Metal-Dielectric-Metal (MDM) oligomers is investigated. Via angling the incident light it is found that in the MDM oligomers, not only the E-component of incident field drives plasmon oscillations, but the H-component also plays an important role to excite magnetic plasmons. These magnetic plasmons give rise to a magnetic resonance in addition to classical Fano Resonance (FR). Importantly, unlike regular MDM structures which exhibit separate magnetic and electric resonances, the MDM oligomers possess the capability to exhibit both magnetic and electric resonances in the same wavelength window with proper metallic and dielectric thicknesses. It leads to the appearance of an additional FR as a result of interference between magnetic-electric plasmonic resonances rather than electric-electric resonances with a clear proof of remarkable absorption enhancement. The unique capability of MDM oligomers exhibiting both electric and magneto-electric FRs can realize many potential applications of FR.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics
(260.5740) Physical optics : Resonance
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Plasmonics

History
Original Manuscript: August 7, 2012
Revised Manuscript: September 8, 2012
Manuscript Accepted: September 10, 2012
Published: September 20, 2012

Citation
J. Yang, M. Rahmani, J. H. Teng, and M. H. Hong, "Magnetic-electric interference in metal-dielectric-metal oligomers: generation of magneto-electric Fano resonance," Opt. Mater. Express 2, 1407-1415 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-10-1407


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev.111(6), 3888–3912 (2011). [CrossRef] [PubMed]
  3. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011). [CrossRef] [PubMed]
  4. A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, “Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators,” Small3(2), 294–299 (2007). [CrossRef] [PubMed]
  5. W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express15(6), 3333–3341 (2007). [CrossRef] [PubMed]
  6. T. Pakizeh, M. S. Abrishamian, N. Granpayeh, A. Dmitriev, and M. Käll, “Magnetic-field enhancement in gold nanosandwiches,” Opt. Express14(18), 8240–8246 (2006). [CrossRef] [PubMed]
  7. C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B78(16), 165114 (2008). [CrossRef]
  8. S. Wu, G. Wang, Q. Wang, L. Zhou, J. Zhao, C. Huang, and Y. Zhu, “Novel optical transmission property of metal–dielectric multilayered structure,” J. Phys. D Appl. Phys.42(22), 225406 (2009). [CrossRef]
  9. T. Pakizeh, A. Dmitriev, M. S. Abrishamian, N. Granpayeh, and M. Käll, “Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches,” J. Opt. Soc. Am. B25(4), 659–667 (2008). [CrossRef]
  10. R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett.10(11), 4394–4398 (2010). [CrossRef] [PubMed]
  11. N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater.20(20), 3859–3865 (2008). [CrossRef]
  12. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater.19(21), 3628–3632 (2007). [CrossRef]
  13. Y. Ekinci, A. Christ, M. Agio, O. J. F. Martin, H. H. Solak, and J. F. Löffler, “Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs,” Opt. Express16(17), 13287–13295 (2008). [CrossRef] [PubMed]
  14. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010). [CrossRef] [PubMed]
  15. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010). [CrossRef] [PubMed]
  16. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010). [CrossRef]
  17. S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010). [CrossRef] [PubMed]
  18. F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett.7(3), 729–732 (2007). [CrossRef] [PubMed]
  19. G. Dolling, M. Wegener, A. Schadle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett.89(23), 231118 (2006). [CrossRef]
  20. J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett.107(4), 043903 (2011). [CrossRef] [PubMed]
  21. Y. L. Zhang, W. Jin, X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Asymmetric fishnet metamaterials with strong optical activity,” Opt. Express20(10), 10776–10787 (2012). [CrossRef] [PubMed]
  22. M. Rahmani, B. Lukiyanchuk, T. T. V. Nguyen, T. Tahmasebi, Y. Lin, T. Y. F. Liew, and M. H. Hong, “Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization,” Opt. Mater. Express1(8), 1409–1415 (2011). [CrossRef]
  23. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010). [CrossRef] [PubMed]
  24. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10(7), 2721–2726 (2010). [CrossRef] [PubMed]
  25. M. Rahmani, B. Lukiyanchuk, T. Tahmasebi, Y. Lin, T. Liew, and M. Hong, “Polarization-controlled spatial localization of near-field energy in planar symmetric coupled oligomers,” Appl. Phys., A Mater. Sci. Process.107(1), 23–30 (2012). [CrossRef]
  26. J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12(2), 1058–1062 (2012). [CrossRef] [PubMed]
  27. M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett.12(4), 2101–2106 (2012). [CrossRef] [PubMed]
  28. M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K. G, Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express19(6), 4949–4956 (2011). [CrossRef] [PubMed]
  29. M. Rahmani, T. Tahmasebi, Y. Lin, B. Lukiyanchuk, T. Y. F. Liew, and M. H. Hong, “Influence of plasmon destructive interferences on optical properties of gold planar quadrumers,” Nanotechnology22(24), 245204 (2011). [CrossRef] [PubMed]
  30. D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano5(10), 8202–8211 (2011). [CrossRef] [PubMed]
  31. M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano5(3), 2042–2050 (2011). [CrossRef] [PubMed]
  32. M. Rahmani, B. Luk'yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photonics Rev., doi: (2012). [CrossRef]
  33. J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett.10(11), 4680–4685 (2010). [CrossRef] [PubMed]
  34. N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmüller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett.12(1), 364–369 (2012). [CrossRef] [PubMed]
  35. N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, and N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanocluster networks,” ACS Nano6(6), 5482–5488 (2012). [CrossRef] [PubMed]
  36. N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater.20(23), 4521–4525 (2008). [CrossRef]
  37. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008). [CrossRef] [PubMed]
  38. Z. S. Zhang, Z. J. Yang, J. B. Li, Z. H. Hao, and Q. Q. Wang, “Plasmonic interferences in two-dimensional stacked double-disk array,” Appl. Phys. Lett.98(17), 173111 (2011). [CrossRef]
  39. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  40. E. D. Palik, Handbook of Optical Constants of Solids, Academic Press handbook series (Academic Press, 1997).
  41. S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett.11(4), 1657–1663 (2011). [CrossRef] [PubMed]
  42. M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett.9(5), 2188–2192 (2009). [CrossRef] [PubMed]
  43. R. C. Dorf and J. A. Svoboda, Introduction to Electric Circuits, 5th ed. (Wiley, 2001).
  44. Z. Iluz and A. Boag, “Dual-Vivaldi wideband nanoantenna with high radiation efficiency over the infrared frequency band,” Opt. Lett.36(15), 2773–2775 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited