OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 10 — Oct. 1, 2012
  • pp: 1437–1448

Localized surface plasmon resonance enhanced photoluminescence from SiNx with different N/Si ratios

Feng Wang, Minghua Wang, Dongsheng Li, and Deren Yang  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 10, pp. 1437-1448 (2012)
http://dx.doi.org/10.1364/OME.2.001437


View Full Text Article

Enhanced HTML    Acrobat PDF (2754 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Silver (Ag) nanostructures with different sizes and densities were deposited onto the luminescence matrixes to improve the photoluminescence (PL) intensity of silicon nitride (SiNx) films via localized surface plasmon resonance (LSPR) coupling. The shape of PL spectra from the SiNx matrixes is mainly determined by their stoichiometric ratio. Moreover, both the surface coverage and the size of Ag nanostructures should be considered for the improvement of PL intensity. The optimal PL intensity of SiNx films might be achieved by the addition of Ag nanostructures with proper surface coverage and size due to the enhanced photo-excitation by LSPR. The dipolar resonance absorption of Ag nanostructures has an insignificant contribution on this improvement.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(310.6860) Thin films : Thin films, optical properties
(350.4600) Other areas of optics : Optical engineering

ToC Category:
Plasmonics

History
Original Manuscript: September 10, 2012
Revised Manuscript: September 20, 2012
Manuscript Accepted: September 20, 2012
Published: September 24, 2012

Citation
Feng Wang, Minghua Wang, Dongsheng Li, and Deren Yang, "Localized surface plasmon resonance enhanced photoluminescence from SiNx with different N/Si ratios," Opt. Mater. Express 2, 1437-1448 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-10-1437


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Q. Wang, Y. G. Wang, L. Cao, and Z. X. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett.83(17), 3474–3476 (2003). [CrossRef]
  2. M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx films. I. Room-temperature band tail states photoluminescence,” J. Appl. Phys.104(8), 083504 (2008). [CrossRef]
  3. F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett.100(3), 031113 (2012). [CrossRef]
  4. M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, “Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters,” Appl. Phys. Lett.90(13), 131903 (2007). [CrossRef]
  5. M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008). [CrossRef]
  6. Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing,” J. Appl. Phys.105(12), 123101 (2009). [CrossRef]
  7. Z. H. Cen, T. P. Chen, L. Ding, Z. Liu, J. I. Wong, M. Yang, W. P. Goh, and S. Fung, “Influence of implantation dose on electroluminescence from Si-implanted silicon nitride thin films,” Appl. Phys., A Mater. Sci. Process.104(1), 239–245 (2011). [CrossRef]
  8. Y. Berencén, O. Jambois, J. M. Ramírez, J. M. Rebled, S. Estradé, F. Peiró, C. Domínguez, J. A. Rodríguez, and B. Garrido, “Blue-green to near-IR switching electroluminescence from Si-rich silicon oxide/nitride bilayer structures,” Opt. Lett.36(14), 2617–2619 (2011). [CrossRef] [PubMed]
  9. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011). [CrossRef] [PubMed]
  10. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000). [CrossRef] [PubMed]
  11. G.-R. Lin, Y.-H. Pai, C.-T. Lin, and C.-C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett.96(26), 263514 (2010). [CrossRef]
  12. C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.)22(44), 5058–5062 (2010). [CrossRef] [PubMed]
  13. Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett.94(4), 041102 (2009). [CrossRef]
  14. C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, and G.-R. Lin, “Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films,” Appl. Phys. Lett.99(24), 243501 (2011). [CrossRef]
  15. B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, and G. Y. Sung, “Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency,” Appl. Phys. Lett.89(6), 063509 (2006). [CrossRef]
  16. D. Li, J. Huang, and D. Yang, “Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment,” Physica E41(6), 920–922 (2009). [CrossRef]
  17. R. Huang, D. Q. Wang, H. L. Ding, X. Wang, K. J. Chen, J. Xu, Y. Q. Guo, J. Song, and Z. Y. Ma, “Enhanced electroluminescence from SiN-based multilayer structure by laser crystallization of ultrathin amorphous Si-rich SiN layers,” Opt. Express18(2), 1144–1150 (2010). [CrossRef] [PubMed]
  18. Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, M. Yang, J. I. Wong, Z. Liu, Y. C. Liu, and S. Fung, “Annealing effect on the optical properties of implanted silicon in a silicon nitride matrix,” Appl. Phys. Lett.93(2), 023122 (2008). [CrossRef]
  19. K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett.89(19), 191120 (2006). [CrossRef]
  20. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  21. B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3100–3104 (2008). [CrossRef]
  22. D. Li, F. Wang, C. Ren, and D. Yang, “Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons,” Opt. Mater. Express2(6), 872–877 (2012). [CrossRef]
  23. N. Gaillard, L. Pinzelli, M. Gros-Jean, and A. Bsiesy, “In situ electric field simulation in metal/insulator/metal capacitors,” Appl. Phys. Lett.89(13), 133506 (2006). [CrossRef]
  24. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater.16(19), 1685–1706 (2004). [CrossRef]
  25. P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106(22), 226802 (2011). [CrossRef] [PubMed]
  26. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004). [CrossRef] [PubMed]
  27. D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett.91(17), 171103 (2007). [CrossRef]
  28. M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008). [CrossRef]
  29. H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011). [CrossRef]
  30. P. Cheng, D. Li, M. Xie, D. Yang, and J. Bao, “Enhancing the photoluminescence intensity of silicon-rich nitride film by localized surface plasmon enhanced photo-excitation,” Opt. Commun.285(7), 1864–1867 (2012). [CrossRef]
  31. Y.-K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007). [CrossRef]
  32. P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008). [CrossRef] [PubMed]
  33. X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011). [CrossRef]
  34. M.-A. Tsai, H.-W. Han, Y.-L. Tsai, P.-C. Tseng, P. Yu, H.-C. Kuo, C.-H. Shen, J.-M. Shieh, and S.-H. Lin, “Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells,” Opt. Express19(S4Suppl 4), A757–A762 (2011). [CrossRef] [PubMed]
  35. G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011). [CrossRef] [PubMed]
  36. T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys.43(18), 183001 (2010). [CrossRef]
  37. J. Tauc, Amorphous and Liquid Semiconductors (Springer, London, New York, Plenum, 1974).
  38. D. Li, F. Wang, D. Yang, and D. Que, “Electrically tunable electroluminescence from SiNx-based light-emitting devices,” Opt. Express20(16), 17359–17366 (2012). [CrossRef]
  39. J. M. Gérardy and M. Ausloos, “Statistically correlated polarization fields and optical properties of a composite medium,” Phys. Rev. B26(8), 4703–4706 (1982). [CrossRef]
  40. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B71(23), 235408 (2005). [CrossRef]
  41. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3–4), 131–314 (2005). [CrossRef]
  42. S. Pillai and M. A. Green, “Plasmonics for photovoltaic application,” Sol. Energy Mater. Sol. Cells94(9), 1481–1486 (2010). [CrossRef]
  43. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited