OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 10 — Oct. 1, 2012
  • pp: 1449–1461

Enhanced light absorption using optical diodes based on cholesteric liquid crystals

Efthymios Kallos, Vassilios Yannopapas, and Demetri J. Photinos  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 10, pp. 1449-1461 (2012)
http://dx.doi.org/10.1364/OME.2.001449


View Full Text Article

Enhanced HTML    Acrobat PDF (1639 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A device that significantly enhances the absorption of incident radiation at visible wavelengths is studied. The device consists of an optical diode based on cholesteric and nematic liquid crystals, as well as a mirror. The diode allows non-symmetric one-way propagation of circularly polarized light around a predetermined region of the spectrum. Via full-wave simulations in both planar and cylindrical geometries, it is shown that combining the proposed device with ordinary absorbing materials results in the doubling of their overall absorption efficiency.

© 2012 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(310.3915) Thin films : Metallic, opaque, and absorbing coatings

ToC Category:
Liquid Crystals

History
Original Manuscript: June 21, 2012
Revised Manuscript: July 29, 2012
Manuscript Accepted: July 29, 2012
Published: September 24, 2012

Citation
Efthymios Kallos, Vassilios Yannopapas, and Demetri J. Photinos, "Enhanced light absorption using optical diodes based on cholesteric liquid crystals," Opt. Mater. Express 2, 1449-1461 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-10-1449


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Capolino, Theory and Phenomena of Metamaterials (CRC Press/Taylor & Francis, 2009).
  2. N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science328(5978), 582–583 (2010). [CrossRef] [PubMed]
  3. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007). [CrossRef] [PubMed]
  4. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev.40(5), 2494–2507 (2011). [CrossRef] [PubMed]
  5. L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University Press, 2009).
  6. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011). [CrossRef] [PubMed]
  7. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  8. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  9. J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).
  10. T. F. Krauss, R. M. D. L. Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature383(6602), 699–702 (1996). [CrossRef]
  11. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature386(6621), 143–149 (1997). [CrossRef]
  12. P. C. W. Davies, “Thermodynamics of black holes,” Rep. Prog. Phys.41(8), 1313–1355 (1978). [CrossRef]
  13. E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95(4), 041106 (2009). [CrossRef]
  14. U. Leonhardt and P. Piwnicki, “Relativistic effects of light in moving media with extremely low group velocity,” Phys. Rev. Lett.84(5), 822–825 (2000). [CrossRef] [PubMed]
  15. Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys.12(6), 063006 (2010). [CrossRef]
  16. C. Argyropoulos, E. Kallos, and Y. Hao, “FDTD analysis of the optical black hole,” J. Opt. Soc. Am. B27(10), 2020–2025 (2010). [CrossRef]
  17. D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys.5(9), 687–692 (2009). [CrossRef]
  18. A. V. Kildishev and V. M. Shalaev, “Transformation optics and metamaterials,” Phys. Usp.54(1), 53–63 (2011). [CrossRef]
  19. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  20. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  21. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun.2, 517 (2011). [CrossRef] [PubMed]
  22. V. Yannopapas and A. G. Vanakaras, “Layer-multiple-scattering theory for metamaterials made from clusters of nanoparticles,” Phys. Rev. B84(8), 085119 (2011). [CrossRef]
  23. V. Yannopapas, “Thermal emission from three-dimensional arrays of gold nanoparticles,” Phys. Rev. B73(11), 113108 (2006). [CrossRef]
  24. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  25. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70(1), 1–87 (2007). [CrossRef]
  26. T. Scharf, Polarized Light in Liquid Crystals and Polymers (Wiley-Interscience, 2007).
  27. I. C. Khoo, Liquid Crystals (Wiley-Interscience, 2007).
  28. J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater.4(5), 383–387 (2005). [CrossRef] [PubMed]
  29. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys.76(4), 2023–2026 (1994). [CrossRef]
  30. S. Mujumdar and H. Ramachandran, “Use of a graded gain random amplifier as an optical diode,” Opt. Lett.26(12), 929–931 (2001). [CrossRef] [PubMed]
  31. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater.21(34), 3504–3509 (2009). [CrossRef]
  32. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, 1992).
  33. N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv.1(2), 022153 (2011). [CrossRef]
  34. J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser Emission in a Dye Doped Cholesteric Polymer Network,” Adv. Mater.14(10), 746–749 (2002). [CrossRef]
  35. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett.23(21), 1707–1709 (1998). [CrossRef] [PubMed]
  36. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003). [CrossRef]
  37. M. H. Song, B. Park, K. C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of Phase Retardation on Defect-Mode Lasing in Polymeric Cholesteric Liquid Crystals,” Adv. Mater.16(910), 779–783 (2004). [CrossRef]
  38. J. X. Guo and D. G. Gray, “Chiroptical behavior of (acetyl)(ethyl)cellulose liquid-crystalline solutions in chloroform,” Macromolecules22(5), 2086–2090 (1989). [CrossRef]
  39. M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett.85(14), 2691–2693 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited