OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 11 — Nov. 1, 2012
  • pp: 1490–1495

Stress changes in H2-loaded SMF optical fibers induced by cw-Ar+ 244 nm irradiation

Georgios Violakis, Nandita Aggarwal, and Hans G. Limberger  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 11, pp. 1490-1495 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1203 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bragg gratings were inscribed in H2-loaded SMF-28e optical fibers and measured for axial stress changes for various exposure doses. Mean refractive index changes as high as 7.5 × 10−3 were observed under cw-244 nm irradiation of 143 W/cm2. Bragg grating reflectivity >99% was achieved for 0.7 mm long (1/e2) gratings. Axial stress measurements realized before and after UV exposure of the fibers, show two competing dose-dependent photosensitivity mechanisms: Negative stress changes at the early stages of exposure and positive stress changes for high exposures.

© 2012 OSA

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.3738) Fiber optics and optical communications : Fiber Bragg gratings, photosensitivity

ToC Category:
Materials for Fiber Optics

Original Manuscript: August 15, 2012
Manuscript Accepted: September 1, 2012
Published: October 1, 2012

Virtual Issues
Specialty Optical Fibers (2012) Optical Materials Express

Georgios Violakis, Nandita Aggarwal, and Hans G. Limberger, "Stress changes in H2-loaded SMF optical fibers induced by cw-Ar+ 244 nm irradiation," Opt. Mater. Express 2, 1490-1495 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett.29(13), 1191–1193 (1993). [CrossRef]
  2. D. P. Hand and P. S. J. Russell, “Photoinduced refractive-index changes in germanosilicate fibers,” Opt. Lett.15(2), 102–104 (1990). [CrossRef] [PubMed]
  3. P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett.20(11), 1346–1348 (1995). [CrossRef] [PubMed]
  4. H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett.68(22), 3069–3071 (1996). [CrossRef]
  5. M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” J. Opt. Soc. Am. B19(8), 1759–1765 (2002). [CrossRef]
  6. J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Europ. Opt. Soc. Rap. Public.4, 09052 (2009). [CrossRef]
  7. F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett.84(24), 4983–4985 (2004). [CrossRef]
  8. H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using cw 244-nm Ar+-laser,” Electron. Lett.46(5), 363–365 (2010). [CrossRef]
  9. V. Grubsky, D. S. Starodubov, and J. Feinberg, “Photochemical reaction of hydrogen with germanosilicate glass initiated by 3.4–5.4-eV ultraviolet light,” Opt. Lett.24(11), 729–731 (1999). [CrossRef] [PubMed]
  10. Q. Zeng, J. F. Stebbins, A. D. Heaney, and T. Erdogan, “Hydrogen speciation in hydrogen-loaded, germania-doped silica glass: a combined NMR and FTIR study of the effects of UV irradiation and heat treatment,” J. Non-Cryst. Solids258(1–3), 78–91 (1999). [CrossRef]
  11. H. G. Limberger, C. Ban, R. P. Salathé, S. A. Slattery, and D. N. Nikogosyan, “Absence of UV-induced stress in Bragg gratings recorded by high-intensity 264 nm laser pulses in a hydrogenated standard telecom fiber,” Opt. Express15(9), 5610–5615 (2007). [CrossRef] [PubMed]
  12. C. Ban, H. G. Limberger, V. Mashinsky, and E. Dianov, “Photosensitivity and stress changes of Ge-free Bi-Al doped silica optical fibers under ArF excimer laser irradiation,” Opt. Express19(27), 26859–26865 (2011). [CrossRef] [PubMed]
  13. J. E. Shelby, “Radiation effects in hydrogen-impregnated vitreous silica,” J. Appl. Phys.50(5), 3702–3706 (1979). [CrossRef]
  14. C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, “Excimer laser-induced expansion in hydrogen-loaded silica,” Appl. Phys. Lett.78(17), 2452–2454 (2001). [CrossRef]
  15. B. Kühn, B. Uebbing, M. Stamminger, I. Radosevic, and S. Kaiser, “Compaction versus expansion behavior related to the OH-content of synthetic fused silica under prolonged UV-laser irradiation,” J. Non-Cryst. Solids330(1–3), 23–32 (2003). [CrossRef]
  16. C. M. Smith and N. F. Borrelli, “Behavior of 157 nm excimer-laser-induced refractive index changes in silica,” J. Opt. Soc. Am. B23(9), 1815–1821 (2006). [CrossRef]
  17. G. Violakis, N. Aggarwal, and H. G. Limberger, “Stress changes induced by cw-244-nm Ar+ irradiation in H2-loaded SMF-28e optical fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP) (OSA, 2012), BM4D.4.
  18. F. Dürr, “Laser-induced stress changes in optical fibers,” PhD thesis No. 3314 (Swiss Federal Institute of Technology, Lausanne, 2005).
  19. T. Rose, D. Spriegel, and J. R. Kropp, “Fast photoelastic stress determination: application to monomode fibres and splices,” Meas. Sci. Technol.4(3), 431–434 (1993). [CrossRef]
  20. Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun.242(4–6), 431–436 (2004). [CrossRef]
  21. F. Dürr, H. G. Limberger, R. P. Salathé, and A. D. Yablon, “Inelastic strain birefringence in optical fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (OSA, 2006), OWA2.
  22. E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, N. H. Ky, H. G. Limberger, and R. P. Salathé, “UV-irradiation-induced structural transformation of germanoscilicate glass fiber,” Opt. Lett.22(23), 1754–1756 (1997). [CrossRef] [PubMed]
  23. W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys.30(5), 779–788 (1959). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited