OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 11 — Nov. 1, 2012
  • pp: 1529–1537

Temporal dynamics of IR-to-visible up-conversion in LiNbO3:Er3+/Yb3+: a path to phosphors with tunable chromaticity

Martina Marin-Dobrincic, Eugenio Cantelar, and Fernando Cusso  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 11, pp. 1529-1537 (2012)
http://dx.doi.org/10.1364/OME.2.001529


View Full Text Article

Enhanced HTML    Acrobat PDF (963 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, a study of the temporal dynamical behavior of IR-visible up-conversion in the LiNbO3: Er3+/Yb3+ system under modulated IR excitation at 980 nm is presented. It is shown that modulation characteristics, including the relative green-to-red emission ratio (GRR), can be quantitatively explained by using the rate equations formalism. The relevant spectroscopic magnitudes are identified and this provides a general framework to explore the properties of other Er3+/Yb3+ doped up-converting phosphors.

© 2012 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.3730) Materials : Lithium niobate
(160.5690) Materials : Rare-earth-doped materials
(250.5230) Optoelectronics : Photoluminescence
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: August 22, 2012
Revised Manuscript: September 9, 2012
Manuscript Accepted: September 9, 2012
Published: October 1, 2012

Citation
Martina Marin-Dobrincic, Eugenio Cantelar, and Fernando Cusso, "Temporal dynamics of IR-to-visible up-conversion in LiNbO3:Er3+/Yb3+: a path to phosphors with tunable chromaticity," Opt. Mater. Express 2, 1529-1537 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-11-1529


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Tansu, J. Y. Yeh, and L. J. Mawst, “Extremely-low threshold-current-density InGaAs quantum well lasers with emission wavelength of 1215-1233 nm,” Appl. Phys. Lett.82(23), 4038–4040 (2003). [CrossRef]
  2. T. Takeuchi, Y.-L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002). [CrossRef]
  3. N. Tansu and L. J. Mawst, “High-performance, strain compensated InGaAs-GaAsP-GaAs (λ=1.17 μm) quantum well diode lasers,” IEEE Photon. Technol. Lett.13(3), 179–181 (2001). [CrossRef]
  4. N. Tansu, J. Y. Yeh, and L. J. Mawst, “High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron.9(5), 1220–1227 (2003). [CrossRef]
  5. N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter16(31), S3277–S3318 (2004). [CrossRef]
  6. V. Gambin, W. Ha, M. Wistey, H. Yuen, S. R. Bank, S. M. Kim, and J. S. Harris, “GaInNAsSb for 1.3-1.6-μm-long wavelength lasers grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron.8(4), 795–800 (2002). [CrossRef]
  7. N. Tansu and L. J. Mawst, “Current injection efficiency of InGaAsN quantum-well lasers,” J. Appl. Phys.97(5), 054502 (2005). [CrossRef]
  8. S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1089–1098 (2005). [CrossRef]
  9. I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “(In) GaAsN-based type-II ‘W’ quantum-well lasers for emission at λ = 1.55 μm,” Appl. Phys. Lett.83(14), 2742–2744 (2003). [CrossRef]
  10. N. Tansu and L. J. Mawst, “Design analysis of 1550-nm GaAsSb-(In)GaAsN type-II quantum well laser active regions,” IEEE J. Quantum Electron.39(10), 1205–1210 (2003). [CrossRef]
  11. L. L. Goddard, S. R. Bank, M. A. Wistey, H. B. Yuen, Z. Rao, and J. S. Harris, “Recombination, gain, band structure, efficiency, and reliability of 1.5-μm GaInNAsSb/GaAs lasers,” J. Appl. Phys.97(8), 083101 (2005). [CrossRef]
  12. M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.20(20), 1700–1702 (2008). [CrossRef]
  13. M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007). [CrossRef]
  14. A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on Novalux extended-cavity surface-emitting laser technology,” Proc. SPIE5737, 113–119 (2005). [CrossRef]
  15. L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys.43(3), 1125–1137 (1972). [CrossRef]
  16. F. Vetrone and J. A. Capobianco, “Lanthanide-doped fluoride nanoparticles: luminescence, upconversion, and biological applications,” Int. J. Nanotechnol.5(9/10/11/12), 1306–1339 (2008). [CrossRef]
  17. C. Cao, W. Qin, J. Zhang, J. Zhang, Y. Wang, Y. Jin, G. Wei, G. Wang, and L. Wang, “Multicolor up-conversion emission of Tm3+/Er3+/Yb3+ tri-doped YF3 phosphors,” J. Nanosci. Nanotechnol.8(3), 1384–1387 (2008). [PubMed]
  18. M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl.50(26), 5808–5829 (2011). [CrossRef] [PubMed]
  19. F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev.38(4), 976–989 (2009). [CrossRef] [PubMed]
  20. C. Paßlick, B. Henke, I. Csaszar, B. Ahrens, P.-T. Miclea, J. A. Johnson, and S. Schweizer, “Advances in up- and down-converted fluorescence for high efficiency solar cells using rare-earth doped fluorozirconate-based glasses and glass ceramics,” Proc. SPIE7772, 77720A (2010). [CrossRef]
  21. C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4: Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale2(7), 1141–1148 (2010). [CrossRef] [PubMed]
  22. A. Chavez-Pirson, “Highly doped phosphate glass fibers for fiber lasers and amplifiers with applications,” Proc. SPIE7839, 78390K (2010). [CrossRef]
  23. M. Quintanilla, N. O. Núñez, E. Cantelar, M. Ocaña, and F. Cussó, “Tuning from blue to magenta the up-converted emissions of YF3:Tm3+/Yb3+ nanocrystals,” Nanoscale3(3), 1046–1052 (2011). [CrossRef] [PubMed]
  24. D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small6(24), 2781–2795 (2010). [CrossRef] [PubMed]
  25. J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev.41(3), 1323–1349 (2012). [CrossRef] [PubMed]
  26. E. Cantelar, J. A. Muñoz, J. A. Sanz-Garcia, and F. Cusso, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter10(39), 8893–8903 (1998). [CrossRef]
  27. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004). [CrossRef] [PubMed]
  28. J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005). [CrossRef]
  29. G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminesence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett.91(13), 133103 (2007). [CrossRef]
  30. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010). [CrossRef] [PubMed]
  31. T. Passuello, F. Piccinelli, M. Pedroni, M. Bettinelli, F. Mangiarini, R. Naccache, F. Vetrone, J. A. Capobianco, and A. Speghini, “White light upconversion of nanocrystalline Er/Tm/Yb doped tetragonal Gd4O3F6,” Opt. Mater.33(4), 643–646 (2011). [CrossRef]
  32. Q. Lü, Y. Wu, A. Li, Y. Wang, Y. Gao, and H. Peng, “Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+, Yb3+ nanoparticles,” Mater. Sci. Eng. B176(14), 1041–1046 (2011). [CrossRef]
  33. A. M. Barnett, “Seeing, red, yellow and green in a semiconductor alfanumeric display,” Electronics43(10), 88–93 (1970).
  34. H. Naruke, T. Mori, and T. Yamase, “Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor,” Opt. Mater.31(10), 1483–1487 (2009). [CrossRef]
  35. A. Rapaport, J. Milliez, M. Bass, A. Cassanho, and H. Jenssen, “Role of pump duration on temperature and efficiency of up-conversion in fluoride crystals co-doped with ytterbium and thulium,” Opt. Express12(21), 5215–5220 (2004). [CrossRef] [PubMed]
  36. E. Cantelar, R. Nevado, G. Lifante, and F. Cusso, “Modelling of optical amplification in Er/Yb co-doped LiNbO3 waveguides,” Opt. Quantum Electron.32(6-8), 819–827 (2000). [CrossRef]
  37. L. Nuñez, G. Lifante, and F. Cusso, “Polarization effects on the line-strength calculations of Er3+-doped LiNbO3,” Appl. Phys. B62(5), 485–491 (1996). [CrossRef]
  38. E. Cantelar, R. E. Di Paolo, F. Cusso, R. Nevado, G. Lifante, W. Sohler, and H. Suche, “Spectroscopy of Er3+ in Zn-diffused LiNbO3 waveguides,” J. Alloy. Comp.323–324, 348–350 (2001). [CrossRef]
  39. M. Ramirez, M. L. Bausa, S. W. Biernacki, A. Kaminska, A. Suchocki, and M. Grinberg, “Influence of hydrostatic pressure on radiative transition probability of the intrashell 4f transitions in Yb3+ ions in lithium niobate crystals,” Phys. Rev. B72(22), 224104 (2005). [CrossRef]
  40. E. Cantelar and F. Cusso, “Competitive up-conversion mechanisms in Er3+/Yb3+ co-doped LiNbO3,” J. Lumin.102–103, 525–531 (2003). [CrossRef]
  41. M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000). [CrossRef]
  42. B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater.6(4), 267–274 (1996). [CrossRef]
  43. D. L. Veasey, J. M. Gary, J. Amin, and J. A. Aust, “Time-dependent modelling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480nm,” IEEE J. Quantum Electron.33(10), 1647–1662 (1997). [CrossRef]
  44. V. Dierolf, A. B. Kutsenko, C. Sandmann, F. Tallian, and A. N. D. W. Von Der Osten, “Towards new lasers in Ti:ER:LiNbO3 waveguides: a study of the excited ER3+ states,” Appl. Phys. B68(5), 767–775 (1999). [CrossRef]
  45. J. C. Boyer, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals,” Nano Lett.7(3), 847–852 (2007). [CrossRef] [PubMed]
  46. N. Nuñez, M. Quintanilla, E. Cantelar, F. Cusso, and M. Ocaña, “Uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies synthesized in polyol media through an ionic liquid,” J. Nanopart. Res.12(7), 2553–2565 (2010). [CrossRef]
  47. Q. Lü, Y. J. Wu, A. H. Li, Y. Wang, Y. Gao, and H. Y. Peng, “Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+,Yb3+ nanoparticles,” Mater. Sci. Eng. B176(14), 1041–1046 (2011). [CrossRef]
  48. J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, and Y. Huang, “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE=Tb, Yb, Er, Tm, and Ho),” J. Solid State Chem.184(8), 2178–2183 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: PDF (30 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited