OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 11 — Nov. 1, 2012
  • pp: 1548–1555

Monolithic integration of optical waveguide and fluidic channel structures in a thiol-ene/methacrylate photopolymer

Martha-Elizabeth Baylor, Benjamin W. Cerjan, Charlotte R. Pfiefer, Robert W. Boyne, Charles L. Couch, Neil B. Cramer, Christopher N. Bowman, and Robert R. McLeod  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 11, pp. 1548-1555 (2012)
http://dx.doi.org/10.1364/OME.2.001548


View Full Text Article

Acrobat PDF (1419 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a thiol-ene/methacrylate-based photopolymer capable of creating coplanar physical features (e.g. micro-fluidic channels) and optical index features (e.g. waveguides) using standard mask-based lithography techniques. This new photopolymer consists of two monomer species that polymerize at different rates. By selectively exposing different areas of a device for various amounts of time, we can select the state of the polymer (i.e. liquid, rubbery, or glassy) to create fluid channels or optical index structures such as waveguides. Using only three exposure steps and two masks, we demonstrate an integrated refractometer with a 90° channel-waveguide crossing to illustrate the fabrication process and the ability to create lithographically aligned waveguides across a gap.

© 2012 OSA

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(220.3740) Optical design and fabrication : Lithography
(230.4000) Optical devices : Microstructure fabrication
(230.7390) Optical devices : Waveguides, planar
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Materials for Integrated Optics

History
Original Manuscript: July 5, 2012
Revised Manuscript: September 16, 2012
Manuscript Accepted: October 2, 2012
Published: October 3, 2012

Citation
Martha-Elizabeth Baylor, Benjamin W. Cerjan, Charlotte R. Pfiefer, Robert W. Boyne, Charles L. Couch, Neil B. Cramer, Christopher N. Bowman, and Robert R. McLeod, "Monolithic integration of optical waveguide and fluidic channel structures in a thiol-ene/methacrylate photopolymer," Opt. Mater. Express 2, 1548-1555 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-11-1548


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010), p. 445.
  2. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt.41(10), 1929–1939 (1994). [CrossRef]
  3. A. Sato, M. Scepanovic, and R. K. Kostuk, “Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm,” Appl. Opt.42(5), 778–784 (2003). [CrossRef] [PubMed]
  4. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt.46(3), 295–301 (2007). [CrossRef] [PubMed]
  5. B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol.7(10), 1445–1453 (1989). [CrossRef]
  6. C. Ye and R. R. McLeod, “GRIN lens and lens array fabrication with diffusion-driven photopolymer,” Opt. Lett.33(22), 2575–2577 (2008). [CrossRef] [PubMed]
  7. D. P. Nair, N. B. Cramer, J. C. Gaipa, M. K. McBride, E. M. Matherly, R. R. McLeod, R. Shandas, and C. N. Bowman, “Two-stage reactive polymer network forming systems,” Adv. Funct. Mater.22(7), 1502–1510 (2012). [CrossRef]
  8. N. B. Cramer, J. W. Stansbury, and C. N. Bowman, “Recent advances and developments in composite dental restorative materials,” J. Dent. Res.90(4), 402–416 (2011). [CrossRef] [PubMed]
  9. J. B. Hutchison, K. T. Haraldsson, B. T. Good, R. P. Sebra, N. Luo, K. S. Anseth, and C. N. Bowman, “Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP),” Lab Chip4(6), 658–662 (2004). [CrossRef] [PubMed]
  10. K. T. Haraldsson, J. B. Hutchison, R. P. Sebra, B. T. Good, K. S. Anseth, and C. N. Bowman, “3D polymeric microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP),” Sens. Actuators B Chem.113(1), 454–460 (2006). [CrossRef]
  11. C. Ye, K. T. Kamysiak, A. C. Sullivan, and R. R. McLeod, “Mode profile imaging and loss measurement for uniform and tapered single-mode 3D waveguides in diffusive photopolymer,” Opt. Express20(6), 6575–6583 (2012). [CrossRef] [PubMed]
  12. L. Dhar, A. Hale, H. E. Katz, M. Schilling, M. G. Schnoes, and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett.24(7), 487–489 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited