OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 11 — Nov. 1, 2012
  • pp: 1556–1561

Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass

Tamilarasan Sabapathy, Arunbabu Ayiriveetil, Ajoy K. Kar, Sundarrajan Asokan, and Stephen J. Beecher  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 11, pp. 1556-1561 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (851 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper reports the fabrication and characterization of an ultrafast laser written Er-doped chalcogenide glass buried waveguide amplifier; Er-doped GeGaS glass has been synthesized by the vacuum sealed melt quenching technique. Waveguides have been fabricated inside the 4 mm long sample by direct ultrafast laser writing. The total passive fiber-to-fiber insertion loss is 2.58 ± 0.02 dB at 1600 nm, including a propagation loss of 1.6 ± 0.3 dB. Active characterization shows a relative gain of 2.524 ± 0.002 dB/cm and 1.359 ± 0.005 dB/cm at 1541 nm and 1550 nm respectively, for a pump power of 500 mW at a wavelength of 980 nm.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3390) Lasers and laser optics : Laser materials processing
(230.7380) Optical devices : Waveguides, channeled
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Materials for Integrated Optics

Original Manuscript: August 15, 2012
Revised Manuscript: September 20, 2012
Manuscript Accepted: September 29, 2012
Published: October 5, 2012

Tamilarasan Sabapathy, Arunbabu Ayiriveetil, Ajoy K. Kar, Sundarrajan Asokan, and Stephen J. Beecher, "Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass," Opt. Mater. Express 2, 1556-1561 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. D. Lezal, “Chalcogenide glasses—survey and progress,” J. Optoelectron. Adv. Mater.5, 23–34 (2003).
  2. A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and their Applications, Springer Series in Optical Sciences (Springer, 2007).
  3. B. J. Eggleton, B. L. Davis, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).
  4. K. Abe, H. Takebe, and K. Morinaga, “Preparation and properties of Ge-Ga-S glasses for laser hosts,” J. Non-Cryst. Solids212(2-3), 143–150 (1997). [CrossRef]
  5. S. Kasap, K. Koughia, G. Soundararajan, and M. G. Brik, “Optical and photoluminescence properties of erbium-doped chalcogenide glasses (GeGaS:Er),” IEEE J. Sel. Top. Quantum Electron.14(5), 1353–1360 (2008). [CrossRef]
  6. D. J. Coleman, P. Golding, T. A. King, and S. D. Jackson, “Spectroscopic and energy-transfer parameters for Er3+ doped and Er3+, Pr3+ codoped GeGaS glasses,” J. Opt. Soc. Am. B19(9), 1982–1989 (2002). [CrossRef]
  7. Z. G. Ivanov, D. Tonchev, R. Ganesan, E. S. R. Gopal, and S. O. Kasap, “Temperature-dependent photoluminescence in Er-doped Ge-S-Ga glasses,” J. Optoelectron. Adv. Mater.7, 1863–1867 (2005).
  8. Z. G. Ivanova, E. Cernoskova, Z. Cernosek, and M. Vlcek, “Features in the photoluminescence line-shape of heavily Er-doped Ge–S–Ga glasses,” J. Non-Cryst. Solids355(37-42), 1873–1876 (2009). [CrossRef]
  9. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003). [CrossRef]
  10. J. E. McCarthy, H. T. Bookey, N. D. Psaila, R. R. Thomson, and A. K. Kar, “Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide,” Opt. Express20(2), 1545–1551 (2012). [CrossRef] [PubMed]
  11. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  12. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  13. J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett.35(23), 4036–4038 (2010). [CrossRef] [PubMed]
  14. N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express15(24), 15776–15781 (2007). [CrossRef] [PubMed]
  15. G. Della Valle, R. Osellame, N. Chiodo, S. Taccheo, G. Cerullo, P. Laporta, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “C-band waveguide amplifier produced by femtosecond laser writing,” Opt. Express13(16), 5976–5982 (2005). [CrossRef] [PubMed]
  16. S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97(11), 111114 (2010). [CrossRef]
  17. E. R. Van Keuren, “Refractive index measurement using total internal reflection,” Am. J. Phys.73(7), 611–614 (2005). [CrossRef]
  18. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008). [CrossRef] [PubMed]
  19. J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express14(5), 1797–1803 (2006). [CrossRef] [PubMed]
  20. T. Schweizer, D. J. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express1(4), 102–107 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited