OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 11 — Nov. 1, 2012
  • pp: 1571–1579

Fabrication of high quality sub-micron Au gratings over large areas with pulsed laser interference lithography for SPR sensors

Alexander Arriola, Ainara Rodriguez, Noemi Perez, Txaber Tavera, Michael J. Withford, Alexander Fuerbach, and Santiago M. Olaizola  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 11, pp. 1571-1579 (2012)
http://dx.doi.org/10.1364/OME.2.001571


View Full Text Article

Enhanced HTML    Acrobat PDF (4132 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metallic gratings were fabricated using high energy laser interference lithography with a frequency tripled Nd:YAG nanosecond laser. The grating structures were first recorded in a photosensitive layer and afterwards transferred to an Au film. High quality Au gratings with a period of 770 nm and peak-to-valley heights of 20-60 nm exhibiting plasmonic resonance response were successfully designed, fabricated and characterized.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Plasmonics

History
Original Manuscript: July 24, 2012
Revised Manuscript: September 20, 2012
Manuscript Accepted: September 20, 2012
Published: October 5, 2012

Citation
Alexander Arriola, Ainara Rodriguez, Noemi Perez, Txaber Tavera, Michael J. Withford, Alexander Fuerbach, and Santiago M. Olaizola, "Fabrication of high quality sub-micron Au gratings over large areas with pulsed laser interference lithography for SPR sensors," Opt. Mater. Express 2, 1571-1579 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-11-1571


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Yu, P. Li, H. Shen, S. Mathur, C. M. Lehr, U. Bakowsky, and F. Mücklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface,” Biomaterials26(15), 2307–2312 (2005). [CrossRef] [PubMed]
  2. B. Päivänranta, P. Baroni, T. Scharf, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Antireflective nanostructured microlenses,” Microelectron. Eng.85(5-6), 1089–1091 (2008). [CrossRef]
  3. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999). [CrossRef]
  4. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. Lond.18(1), 269–275 (1901). [CrossRef]
  5. G. Nemova and R. Kashyap, “A compact integrated planar-waveguide refractive-index sensor based on a corrugated metal grating,” J. Lightwave Technol.25(8), 2244–2250 (2007). [CrossRef]
  6. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B23A, 2135–2136 (1968).
  7. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys.216(4), 398–410 (1968). [CrossRef]
  8. K.-Y. Hwang, S.-Y. Jeong, Y.-R. Kim, K. Namkoong, H.-K. Lim, W.-S. Chung, J.-H. Kim, and N. Huh, “Rapid detection of bacterial cell from whole blood: Integration of DNA sample preparation into single micro-PCR chip,” Sens. Actuators B Chem.154(1), 46–51 (2011). [CrossRef]
  9. D. Bratton, D. Yang, J. Dai, and C. K. Ober, “Recent progress in high resolution lithography,” Polym. Adv. Technol.17(2), 94–103 (2006). [CrossRef]
  10. F. Brizuela, Y. Wang, C. A. Brewer, F. Pedaci, W. Chao, E. H. Anderson, Y. Liu, K. A. Goldberg, P. Naulleau, P. Wachulak, M. C. Marconi, D. T. Attwood, J. J. Rocca, and C. S. Menoni, “Microscopy of extreme ultraviolet lithography masks with 13.2 nm tabletop laser illumination,” Opt. Lett.34(3), 271–273 (2009). [CrossRef] [PubMed]
  11. A. Cattoni, E. Cambril, D. Decanini, G. Faini, and A. M. Haghiri-Gosnet, “Soft UV-NIL at 20 nm scale using flexible bi-layer stamp casted on HSQ master mold,” Microelectron. Eng.87(5-8), 1015–1018 (2010). [CrossRef]
  12. Y. Fu, N. Bryan, and W. Zhou, “Quasi-direct writing of diffractive structures with a focused ion beam,” Opt. Express12(9), 1803–1809 (2004). [CrossRef] [PubMed]
  13. X. Li, Q. Wang, J. Zhang, W. Zhou, Y. Liu, Y. Wan, and X. Niu, “Large area nanosize array stamp for UV-based nanoimprint lithography fabricated by size reduction process,” Microelectron. Eng.86(10), 2015–2019 (2009). [CrossRef]
  14. C.-S. Kim, S.-H. Ahn, and D.-Y. Jang, “Review: developments in micro/nanoscale fabrication by focused ion beams,” Vacuum86(8), 1014–1035 (2012). [CrossRef]
  15. S. Y. Chuang, H. L. Chen, S. S. Kuo, Y. H. Lai, and C. C. Lee, “Using direct nanoimprinting to study extraordinary transmission in textured metal films,” Opt. Express16(4), 2415–2422 (2008). [CrossRef] [PubMed]
  16. A. A. Baski, “Fabrication of nanoscale structures using STM and AFM,” Appl. Surf. Sci.3, 271–277 (2002).
  17. G. Luo, G. Xie, Y. Zhang, G. Zhang, Y. Zhang, P. Carlberg, T. Zhu, and Z. Liu, “Scanning probe lithography for nanoimprinting mould fabrication,” Nanotechnology17(12), 3018–3022 (2006). [CrossRef]
  18. S. Zankovych, T. Hoffmann, J. Seekamp, J.-U. Bruch, and C. M. S. Torres, “Nanoimprint lithography: challenges and prospects,” Nanotechnology12(2), 91–95 (2001). [CrossRef]
  19. A. Rodriguez, M. Echeverría, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: from laboratory to industry,” Microelectron. Eng.86(4–6), 937–940 (2009). [CrossRef]
  20. A. Lasagni, C. Holzapfel, T. Weirich, and F. Mucklich, “Laser interference metallurgy: a new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci.253(19), 8070–8074 (2007). [CrossRef]
  21. Z. Pang and X. Zhang, “Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation,” Nanotechnology22(14), 145303 (2011). [CrossRef] [PubMed]
  22. C. H. Liu, M. H. Hong, M. C. Lum, H. Flotow, F. Ghadessy, and J. B. Zhang, “Large-area micro/nanostructures fabrication in quartz by laser interference lithography and dry etching,” Appl. Phys., A Mater. Sci. Process.101(2), 237–241 (2010). [CrossRef]
  23. C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor, “Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance,” Opt. Express16(14), 10701–10709 (2008). [CrossRef] [PubMed]
  24. H. Shin, H. Yoo, and M. Lee, “Fabrication of Au thin film gratings by pulsed laser interference,” Appl. Surf. Sci.256(9), 2944–2947 (2010). [CrossRef]
  25. K. Du, I. Wathuthanthri, W. D. Mao, W. Xu, and C. H. Choi, “Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography,” Nanotechnology22(28), 285306 (2011). [CrossRef] [PubMed]
  26. E. Molotokaité, M. Gedvilas, G. Raciukaitis, and V. Girdauskas, “Picosecond laser beam interference ablation of thin metal films on glass substrate,” J. Laser Micro/Nanoeng.5(1), 74–79 (2010). [CrossRef]
  27. J. J. J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Fabrication of large-area hole arrays using high-efficiency two-grating interference system and femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process.103(2), 267–270 (2011). [CrossRef]
  28. A. Lasagni, M. D’Alessandria, R. Giovanelli, and F. Mücklich, “Advanced design of periodical architectures in bulk metals by means of laser interference metallurgy,” Appl. Surf. Sci.254(4), 930–936 (2007). [CrossRef]
  29. P. Rodríguez-Franco, A. Arriola, N. Darwish, H. Keshmiri, T. Tavera, S. M. Olaizola, and M. Moreno, “Fabrication of broad area optical nanostructures for high throughput chemical sensing,” in Proceedings IMCS 2012 – The 14th International Meeting on Chemical Sensors (2012).
  30. M. Ellman, A. Rodríguez, N. Pérez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: effect of laser fluence and polarisation,” Appl. Surf. Sci.255(10), 5537–5541 (2009). [CrossRef]
  31. Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett.83(15), 3021–3023 (2003). [CrossRef]
  32. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett.88(5), 057403 (2002). [CrossRef] [PubMed]
  33. M. M. J. Treacy, “Dynamical diffraction explanationof the anomalous transmission of light through metallic gratings,” Phys. Rev. B66(19), 195105 (2002). [CrossRef]
  34. C. K. Hu, “Surface plasmon resonance sensor based on diffraction grating with high sensitivity and high resolution,” Optik (Stuttg.)122(21), 1881–1884 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited