OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 11 — Nov. 1, 2012
  • pp: 1641–1654

Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M.C. Paul  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 11, pp. 1641-1654 (2012)
http://dx.doi.org/10.1364/OME.2.001641


View Full Text Article

Enhanced HTML    Acrobat PDF (1337 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Provided herein is a detailed analysis of the Brillouin properties of alumina-doped silica optical fiber. The acoustic velocity of alumina in silica is shown to be a very strong function of its mass density, which can vary significantly from sample-to-sample and likely originates from the observed linear relationship between the longitudinal elastic modulus and the mass density. Further, the refractive index versus the alumina concentration provides a very sensitive probe of this mass density, and can be used to derive other structural details about the alumina. For example, for the first time to the best of our knowledge measurements of the thermo- and strain-acoustic coefficients (TAC and SAC, respectively) of the alumina dopant in silica-based fiber are presented and it is shown that these quantities are not strongly influenced by the density of alumina. Further, the material acoustic damping does not appear to be strongly influenced by the density. The TAC and SAC, or the dependence of the acoustic velocity on temperature or strain, respectively, are both found to be negative and large for alumina, in fact much larger than those for silica. Alumina thus represents a unique and potentially very useful material for the compositional tuning of the Brillouin scattering characteristics of optical fibers for distributed sensing and other applications. Conversely, these properties of alumina reduce the effectiveness of using applied temperature or strain gradients to fiber in order to suppress Brillouin scattering in fiber laser systems.

© 2012 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2400) Fiber optics and optical communications : Fiber properties
(290.5830) Scattering : Scattering, Brillouin
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Materials for Fiber Optics

History
Original Manuscript: August 28, 2012
Revised Manuscript: October 18, 2012
Manuscript Accepted: October 18, 2012
Published: October 24, 2012

Virtual Issues
Specialty Optical Fibers (2012) Optical Materials Express

Citation
P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M.C. Paul, "Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers," Opt. Mater. Express 2, 1641-1654 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-11-1641


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004). [CrossRef] [PubMed]
  2. A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids356(18-19), 848–851 (2010). [CrossRef]
  3. T. Simo, M. Söderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE6116, 94–102 (2006).
  4. K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys.59(10), 3430–3436 (1986). [CrossRef]
  5. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt.11(11), 2489–2494 (1972). [CrossRef] [PubMed]
  6. B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P. Martin, and J.-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE6453, 64530H (2007). [CrossRef]
  7. T. Kitabayashi, M. Ikeda, M. Nakai, T. Sakai, K. Himeno, and K. Ohashi, “Population inversion factor dependence of photodarkening of Yb-doped fibres and its suppression by highly aluminum doping,” in Conference of Lasers and Electro-Optics, CLEO Technical Digest (OSA, 2006), paper OThC5.
  8. M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express15(13), 8290–8299 (2007). [CrossRef] [PubMed]
  9. P. Dragic, “SBS-suppressed, single mode Yb-doped fibre amplifiers,” in Proc. OFC/NFOEC (2009), paper J.Th.A.10.
  10. C. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993). [CrossRef]
  11. P. Dragic, P.-C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express18(10), 10055–10067 (2010). [CrossRef] [PubMed]
  12. P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Proc. CLEO/QELS Tech. Dig. (2005), pp. 1984–1986.
  13. P. Dragic, “Brillouin suppression by fiber design,” in IEEE Summer Top. Meet. Ser. (2010), pp. 151–152.
  14. M. D. Mermelstein, “SBS threshold measurements and acoustic beam propagation modeling in guiding and anti-guiding single mode optical fibers,” Opt. Express17(18), 16225–16237 (2009). [CrossRef] [PubMed]
  15. L. Dong, “Formulation of a complex mode solver for arbitrary circular acoustic waveguides,” J. Lightwave Technol.18, 3162–3175 (2010).
  16. P. D. Dragic, P.-C. Law, and Y.-S. Liu, “Higher order modes in acoustically antiguiding optical fiber,” Microw. Opt. Technol. Lett.54(10), 2347–2349 (2012). [CrossRef]
  17. K. Nassau, J. W. Shiever, and J. T. Krause, “Preparation and properties of fused silica containing alumina,” J. Am. Ceram. Soc.58(9-10), 461 (1975). [CrossRef]
  18. M. Huggins and K. Sun, “Calculation of density and optical constants of a glass from its composition in weight percentage,” J. Am. Ceram. Soc.26(1), 4–11 (1943). [CrossRef]
  19. Y. Hibino, F. Hanawa, and M. Horiguchi, “Drawing-induced residual stress effects on optical characteristics in pure-silica-core single-mode fibers,” J. Appl. Phys.65(1), 30–34 (1989). [CrossRef]
  20. A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron.10(2), 300–311 (2004). [CrossRef]
  21. W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett.19(18), 1389–1391 (2007). [CrossRef]
  22. J. W. Lee, G. H. Sigel, and J. Li, “Processing-induced defects in optical waveguide materials,” J. Non-Cryst. Solids239(1-3), 57–65 (1998). [CrossRef]
  23. P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics6(9), 629–635 (2012). [CrossRef]
  24. P.-C. Law, Y.-S. Liu, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express1(4), 686–699 (2011). [CrossRef]
  25. P.-C. Law, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mater. Express2(4), 391–404 (2012). [CrossRef]
  26. D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett.25(14), 913–915 (1989). [CrossRef]
  27. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun.76-B, 382–390 (1993).
  28. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron.13(3), 546–551 (2007). [CrossRef]
  29. J. E. Rothenberg, P. A. Thielen, M. Wickham, and C. P. Asman, “Suppression of stimulated Brillouin scattering in single-frequency multi-kilowatt fiber amplifiers,” Proc. SPIE6873, 68730O (2008). [CrossRef]
  30. J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution doping technique for fabrication of rare-earth doped optical fibres,” Electron. Lett.23(7), 329–331 (1987). [CrossRef]
  31. P. D. Dragic, “The acoustic velocity of Ge-doped silica fibers: a comparison of two models,” Int. J. Appl. Glass Sci.1(3), 330–337 (2010). [CrossRef]
  32. P. Dragic, “Estimating the effect of Ge doping on the acoustic damping coefficient via a highly Ge-doped MCVD silica fiber,” J. Opt. Soc. Am. B26(8), 1614–1620 (2009). [CrossRef]
  33. A. Bertholds and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol.6(1), 17–20 (1988). [CrossRef]
  34. P. Dragic, “Simplified model for effect of Ge doping on silica fibre acoustic properties,” Electron. Lett.45(5), 256–257 (2009). [CrossRef]
  35. P. Dragic, “Brillouin gain reduction via B2O3 doping,” J. Lightwave Technol.29(7), 967–973 (2011). [CrossRef]
  36. G. Gutiérrez and B. Johansson, “Molecular dynamics study of structural properties of amorphous Al2O3,” Phys. Rev. B65(10), 104202 (2002). [CrossRef]
  37. M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997). [CrossRef]
  38. W. Taylor, “Structure of sillimanite and mullite,” Z. Kristallogr.68, 503–521 (1928).
  39. S. Spinner, “Temperature dependence of elastic constants of vitreous silica,” J. Am. Ceram. Soc.45(8), 394–397 (1962). [CrossRef]
  40. R. H. Wittstruck, N. W. Emanetoglu, Y. Lu, S. Laffey, and A. Ballato, “Properties of transducers and substrates for high frequency resonators and sensors,” J. Acoust. Soc. Am.118(3), 1414–1423 (2005). [CrossRef]
  41. S. V. Sinogeikin, D. L. Lakshtanov, J. D. Nicholas, J. M. Jackson, and J. D. Bass, “High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating,” J. Eur. Ceram. Soc.25(8), 1313–1324 (2005). [CrossRef]
  42. B. Stern, (Cornell University), V. DeFilippo (New Jersey Institute of Technology), and A. Ballato (Clemson University) are preparing a manuscript to be called “Elasticity of alumina to 1825 K, computed from sapphire data by self-consistent averaging.”
  43. R. G. Munro, “Evaluated material properties for a sintered α-alumina,” J. Am. Ceram. Soc.80(8), 1919–1928 (1997). [CrossRef]
  44. H. Eilers, E. Strauss, and W. M. Yen, “Photoelastic effect in Ti3+-doped sapphire,” Phys. Rev. B Condens. Matter45(17), 9604–9610 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited