OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 11 — Nov. 1, 2012
  • pp: 1655–1662

Chemoselective gas sensors based on plasmonic nanohole arrays

Jeremy B. Wright, Kirsten N. Cicotte, Ganapathi Subramania, Shawn M. Dirk, and Igal Brener  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 11, pp. 1655-1662 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1088 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have demonstrated a binary chemoselective gas sensor using a combination of plasmonic nanohole arrays and a voltage-directed assembly of diazonium chemistry. The employment of a voltage-directed functionalization allows for the realization of a multiplexed sensor. The device was read optically and was fabricated using a combination of electron-beam and conventional lithography; it contains several regions each electrically isolated from each other. We used calibrated gas dosage delivery to confirm the selectivity of the sensor and observed reversible spectral shifts of several nm upon gas exposure. The resulting spectral shift indicates the potential for use in chemical arrayed detection for low concentration gas sensing

© 2012 OSA

OCIS Codes
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: August 3, 2012
Revised Manuscript: October 18, 2012
Manuscript Accepted: October 18, 2012
Published: October 24, 2012

Jeremy B. Wright, Kirsten N. Cicotte, Ganapathi Subramania, Shawn M. Dirk, and Igal Brener, "Chemoselective gas sensors based on plasmonic nanohole arrays," Opt. Mater. Express 2, 1655-1662 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Liedberg, C. Nylander, and I. Lunström, “Surface-plasmon resonance for gas-detection and biosensing,” Sens. Actuators4, 299–304 (1983). [CrossRef]
  2. “Biacore,” retrieved www.biacore.com .
  3. Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology15(9), 1368–1374 (2004). [CrossRef]
  4. A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem.79(11), 4094–4100 (2007). [CrossRef] [PubMed]
  5. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res.41(8), 1049–1057 (2008). [CrossRef] [PubMed]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  7. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007). [CrossRef] [PubMed]
  8. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001). [CrossRef] [PubMed]
  9. K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett.31(10), 1528–1530 (2006). [CrossRef] [PubMed]
  10. J. L. Briscoe and S.-Y. Cho, “A periodically coupled plasmon nanostructure for refractive index sensing,” Opt. Express19(9), 8815–8820 (2011). [CrossRef] [PubMed]
  11. J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express15(26), 18119–18129 (2007). [CrossRef] [PubMed]
  12. K. Cheng, S. Wang, Z. Cui, Q. Li, S. Dai, and Z. Du, “Large-scale fabrication of plasmonic gold nanohole arrays for refractive index sensing at visible region,” Appl. Phys. Lett.100(25), 253101 (2012). [CrossRef]
  13. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010). [CrossRef]
  14. S. H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express13(8), 3150–3165 (2005). [CrossRef] [PubMed]
  15. “Lumerical,” retrieved www.lumerical.com .
  16. J. C. Harper, R. Polsky, S. M. Dirk, D. R. Wheeler, and S. M. Brozik, “Electroaddressable selective functionalization of electrode arrays: Catalytic NADH detection using aryl diazonium modified gold electrodes,” Electroanalysis19(12), 1268–1274 (2007). [CrossRef]
  17. J. C. Harper, R. Polsky, D. R. Wheeler, S. M. Dirk, and S. M. Brozik, “Selective immobilization of DNA and antibody probes on electrode arrays: simultaneous electrochemical detection of DNA and protein on a single platform,” Langmuir23(16), 8285–8287 (2007). [CrossRef] [PubMed]
  18. R. Polsky, J. C. Harper, S. M. Dirk, D. C. Arango, D. R. Wheeler, and S. M. Brozik, “Diazonium-functionalized horseradish peroxidase immobilized via addressable electrodeposition: direct electron transfer and electrochemical detection,” Langmuir23(2), 364–366 (2007). [CrossRef] [PubMed]
  19. R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, D. C. Arango, and S. M. Brozik, “Electrically addressable diazonium-functionalized antibodies for multianalyte electrochemical sensor applications,” Biosens. Bioelectron.23(6), 757–764 (2008). [CrossRef] [PubMed]
  20. R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, J. A. Rawlings, and S. M. Brozik, “Reagentless electrochemical immunoassay using electrocatalytic nanoparticle-modified antibodies,” Chem. Commun. (26), 2741–2743 (2007). [CrossRef] [PubMed]
  21. S. M. Dirk, S. W. Howell, B. K. Price, H. Fan, W. Cody, D. R. Wheeler, J. M. Tour, J. J. Whiting, and R. J. Simonson, “Vapor sensing using conjugated molecule-linked Au nanoparticles in a siloxane matrix,” Abstracts of Papers, 237th ACS National Meeting, Salt Lake City, UT, United States, March 22–26, 2009, COLL-116 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited