OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 11 — Nov. 1, 2012
  • pp: 1671–1679

GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications

R. Sanatinia, K. M. Awan, S. Naureen, N. Anttu, E. Ebraert, and S. Anand  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 11, pp. 1671-1679 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1380 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on fabrication and optical characterization of GaAs nanopillar (NP) arrays, obtained using a combination of low-cost mask generation by self-assembled silica particles (nanosphere lithography) and dry etching. Tapered structures (conical and frustum NP arrays) are fabricated by appropriate optimization of process parameters. Significant suppression of surface reflectance is observed for both geometries over a broad wavelength range. Simulations, based on finite difference time domain (FDTD) method, show good agreement with reflectivity measurements and serve as a guideline for design of NPs and understanding their interaction with light. A combination of wet chemical etching and sulfur–based passivation of GaAs NPs, results in more than one order of magnitude enhancement in PL intensity and recovery of PL line-width, which is very promising for photovoltaic applications.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(300.1030) Spectroscopy : Absorption
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: October 8, 2012
Revised Manuscript: October 22, 2012
Manuscript Accepted: October 22, 2012
Published: October 29, 2012

R. Sanatinia, K. M. Awan, S. Naureen, N. Anttu, E. Ebraert, and S. Anand, "GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications," Opt. Mater. Express 2, 1671-1679 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009). [CrossRef]
  2. G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol.5(6), 391–400 (2010). [CrossRef] [PubMed]
  3. S. L. Diedenhofen, O. T. Janssen, G. Grzela, E. P. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano5(3), 2316–2323 (2011). [CrossRef] [PubMed]
  4. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  5. L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett.11(2), 385–390 (2011). [CrossRef] [PubMed]
  6. J. Bae, H. Kim, X.-M. Zhang, C. H. Dang, Y. Zhang, Y. Jin Choi, A. Nurmikko, and Z. Lin Wang, “Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters,” Nanotechnology21(9), 095502 (2010). [CrossRef] [PubMed]
  7. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  8. R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett.12(2), 820–826 (2012). [CrossRef] [PubMed]
  9. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007). [CrossRef] [PubMed]
  10. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011). [CrossRef] [PubMed]
  11. P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M.-E. Pistol, “Colorful InAs nanowire arrays: from strong to weak absorption with geometrical tuning,” Nano Lett.12(4), 1990–1995 (2012). [CrossRef] [PubMed]
  12. M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, “Axial InP nanowire tandem junction grown on a silicon substrate,” Nano Lett.11(5), 2028–2031 (2011). [CrossRef] [PubMed]
  13. S. Naureen, R. Sanatinia, N. Shahid, and S. Anand, “High optical quality InP-based nanopillars fabricated by a top-down approach,” Nano Lett.11(11), 4805–4811 (2011). [CrossRef] [PubMed]
  14. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961). [CrossRef]
  15. M. Yamaguchi, “Radiation-resistant solar cells for space use,” Sol. Energy Mater. Sol. Cells68(1), 31–53 (2001). [CrossRef]
  16. N. Tajik, C. E. Chia, and R. R. LaPierre, “Improved conductivity and long-term stability of sulfur-passivated n-GaAs nanowires,” Appl. Phys. Lett.100(20), 203122 (2012). [CrossRef]
  17. P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008). [CrossRef] [PubMed]
  18. Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express17(16), 13747–13757 (2009). [CrossRef] [PubMed]
  19. T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys.43(18), 183001 (2010). [CrossRef]
  20. G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011). [CrossRef] [PubMed]
  21. J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express18(26), 27589–27605 (2010). [CrossRef] [PubMed]
  22. E. D. Kosten, E. L. Warren, and H. A. Atwater, “Ray optical light trapping in silicon microwires: exceeding the 2n2 intensity limit,” Opt. Express19(4), 3316–3331 (2011). [CrossRef] [PubMed]
  23. V. N. Bessolov, M. V. Lebedev, and D. R. T. Zahn, “Raman scattering study of surface barriers in GaAs passivated in alcoholic sulfide solutions,” J. Appl. Phys.82(5), 2640 (1997). [CrossRef]
  24. O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Intense internal and external fluorescence as solar cells approach the Shockley-Queisser efficiency limit,” arXiv:1106.1603 [physics.optics] (2011).
  25. A. C. E. Chia, M. Tirado, Y. Li, S. Zhao, Z. Mi, D. Comedi, and R. R. LaPierre, “Electrical transport and optical model of GaAs-AlInP core-shell nanowires,” J. Appl. Phys.111(9), 094319 (2012). [CrossRef]
  26. J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett.89(23), 232102 (2006). [CrossRef]
  27. M. T. Sheldon, C. N. Eisler, and H. A. Atwater, “GaAs passivation with trioctylphosphine sulfide for enhanced solar cell efficiency and durability,” Adv. Energy Mater.2(3), 339–344 (2012). [CrossRef]
  28. N. Tajik, C. M. Haapamaki, and R. R. LaPierre, “Photoluminescence model of sulfur passivated p-InP nanowires,” Nanotechnology23(31), 315703 (2012). [CrossRef] [PubMed]
  29. S. Naureen, N. Shahid, R. Sanatinia, and S. Anand, “Top-down fabrication of high quality III-V nanostructures by monolayer controlled sculpting and simultaneous passivation,” Adv. Funct. Mater.2012, (2012), doi:. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited