OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 12 — Dec. 1, 2012
  • pp: 1683–1689

Fiber Raman amplification in a two-scale spun fiber

Sergey V. Sergeyev  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 12, pp. 1683-1689 (2012)
http://dx.doi.org/10.1364/OME.2.001683


View Full Text Article

Enhanced HTML    Acrobat PDF (1453 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a theoretical study of activated de-correlation of pump and signal states of polarization in a fiber Raman amplifier based on 10 km of fiber with two-scale fiber spinning profile. As a result of the de-correlation, polarization dependent gain can be suppressed to 0.11 dB, PMD to 0.037 ps/km1/2 and gain can be increased to 15 dB.

© 2012 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Materials for Fiber Optics

History
Original Manuscript: August 15, 2012
Revised Manuscript: September 18, 2012
Manuscript Accepted: September 26, 2012
Published: October 31, 2012

Virtual Issues
Specialty Optical Fibers (2012) Optical Materials Express

Citation
Sergey V. Sergeyev, "Fiber Raman amplification in a two-scale spun fiber," Opt. Mater. Express 2, 1683-1689 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-12-1683


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, “Theory of fiber optic Raman polarizers,” Opt. Lett.35(23), 3970–3972 (2010). [CrossRef] [PubMed]
  2. M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express17(2), 947–955 (2009). [CrossRef] [PubMed]
  3. L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” IEEE Photon. Technol. Lett.23(4), 254–256 (2011). [CrossRef]
  4. S. V. Sergeyev, “Activated polarization pulling and de-correlation of signal and pump states of polarization in a fiber Raman amplifier,” Opt. Express19(24), 24268–24279 (2011). [CrossRef] [PubMed]
  5. S. Sergeyev and S. Popov, “Two-section fiber optic Raman polarizer,” IEEE J. Quantum Electron.48(1), 56–60 (2012). [CrossRef]
  6. S. Sergeyev, S. Popov, and A. T. Friberg, “Virtually isotropic transmission media with fiber Raman amplifier,” IEEE J. Quantum Electron.46(10), 1492–1497 (2010). [CrossRef]
  7. N. J. Muga, M. F. S. Ferreira, and A. N. Pinto, “Broadband polarization pulling using Raman amplification,” Opt. Express19(19), 18707–18712 (2011). [CrossRef] [PubMed]
  8. P. Morin, S. Pitois, and J. Fatome, “Simultaneous polarization attraction and Raman amplification of a light beam in optical fibers,” J. Opt. Soc. Am. B29(8), 2046–2052 (2012). [CrossRef]
  9. V. V. Kozlov and S. Wabnitz, “Suppression of relative intensity noise in fiber-optic Raman polarizers,” IEEE Photon. Technol. Lett.23(15), 1088–1090 (2011). [CrossRef]
  10. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express16(26), 21692–21707 (2008). [CrossRef] [PubMed]
  11. J. E. Heebner, R. S. Bennink, R. W. Boyd, and R. A. Fisher, “Conversion of unpolarized light to polarized light with greater than 50% efficiency by photorefractive two-beam coupling,” Opt. Lett.25(4), 257–259 (2000). [CrossRef] [PubMed]
  12. P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40 Gbit/s regeneration applications,” Opt. Express19(18), 17158–17166 (2011). [CrossRef] [PubMed]
  13. M. Guasoni and S. Wabnitz, “Nonlinear polarizers based on four-wave mixing in high-birefringence optical fibers,” J. Opt. Soc. Am. B29(6), 1511–1520 (2012). [CrossRef]
  14. J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett.101(12), 123903 (2008). [CrossRef] [PubMed]
  15. Q. Lin and G. P. Agrawal, “Vector theory of stimulated Raman scattering and its application to fiber-based Raman amplifiers,” J. Opt. Soc. Am. B20(8), 1616–1631 (2003). [CrossRef]
  16. P. K. A. Wai and C. R. Menyak, “Polarization mode dispersion, decorrelation and diffusion in optical fibers with randomly varying birefringence,” J. Lightwave Technol.14(2), 148–157 (1996). [CrossRef]
  17. A. Galtarossa, L. Palmieri, A. Pizzinat, B. S. Marks, and C. R. Menyuk, “An analytical formula for the mean differential group delay of randomly-birefringent spun fibers,” J. Lightwave Technol.21(7), 1635–1643 (2003). [CrossRef]
  18. F. Marino, M. Giudici, S. Barland, and S. Balle, “Experimental evidence of stochastic resonance in an excitable optical system,” Phys. Rev. Lett.88(4), 040601 (2002). [CrossRef] [PubMed]
  19. B. Lindner, J. García-Ojalvo, A. Neiman, and L. Schimansky-Geier, “Effects of noise in excitable systems,” Phys. Rep.392(6), 321–424 (2004). [CrossRef]
  20. M. I. Dykman, B. Golding, L. I. McCann, V. N. Smelyanskiy, D. G. Luchinsky, R. Mannella, and P. V. E. McClintock, “Activated escape of periodically driven systems,” Chaos11(3), 587–594 (2001). [CrossRef] [PubMed]
  21. S. Sergeyev, S. Popov, and A. T. Friberg, “Polarization dependent gain and gain fluctuations in a fiber Raman amplifier,” J. Opt. A, Pure Appl. Opt.9(12), 1119–1122 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited