OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 12 — Dec. 1, 2012
  • pp: 1690–1701

Fabrication and application of zirconia-erbium doped fibers

H. Ahmad, K. Thambiratnam, M. C. Paul, A. Z. Zulkifli, Z. A. Ghani, and S. W. Harun  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 12, pp. 1690-1701 (2012)
http://dx.doi.org/10.1364/OME.2.001690


View Full Text Article

Enhanced HTML    Acrobat PDF (2725 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, the fabrication of a Zirconia-Erbium co-Doped Fiber (Zr-EDF) and its application in the generation of non-linear effects as well as use in a compact pulsed fiber laser system is described. The Zr-EDF is fabricated by the Modified Chemical Vapor Deposition (MCVD) technique in combination with solution doping to incorporate the glass modifiers and nucleating agent. The resulting preforms are annealed and drawn into fiber strands with a 125.0 ± 0.5 µm diameter. Two Zr-EDFs, ZEr-A and ZEr-B, are fabricated with erbium ion concentrations of 2800 and 3888 ppm/wt and absorption rates of 14.5 and 18.3 dB/m at 980 nm respectively. Due to its higher erbium dopant concentration, a 4 m long ZEr-B is used to demonstrate the generation of the Four-Wave-Mixing (FWM) effect in the Zr-EDF. The measured FWM power levels agree well with theoretical predictions, giving a maximum FWM power - 45 dBm between 1558 nm to 1565 nm, and the generated sidebands are as predicted. The non-linear coefficient of ZEr-B is measured to be 14 W−1km−1, with chromatic and slope dispersion values of 28.45 ps/nm.km and 3.63 ps/nm2.km respectively. The ZEr-B is also used together with a graphene based saturable absorber to create a compact, passively Q-switched fiber laser. Short pulses with a pulse width of 8.8 µs and repetition rate of 9.15 kHz are generated at a pump power of 121.8 mW, with a maximum average output power of 161.35 µW and maximum pulse energy value of 17.64 nJ. The fabricated Zr-EDF has many potential applications in multi-wavelength generation as well as in the development of compact, pulsed laser sources.

© 2012 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(140.3500) Lasers and laser optics : Lasers, erbium
(140.3510) Lasers and laser optics : Lasers, fiber
(160.2290) Materials : Fiber materials
(160.4330) Materials : Nonlinear optical materials

ToC Category:
Materials for Fiber Optics

History
Original Manuscript: September 4, 2012
Revised Manuscript: September 23, 2012
Manuscript Accepted: September 23, 2012
Published: October 31, 2012

Virtual Issues
Specialty Optical Fibers (2012) Optical Materials Express

Citation
H. Ahmad, K. Thambiratnam, M. C. Paul, A. Z. Zulkifli, Z. A. Ghani, and S. W. Harun, "Fabrication and application of zirconia-erbium doped fibers," Opt. Mater. Express 2, 1690-1701 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-12-1690


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. E. Keiser, “A review of WDM technology and applications,” Opt. Fiber Technol.5(1), 3–39 (1999). [CrossRef]
  2. R. Ramaswami, “Optical fiber communication: from transmission to networking,” IEEE Commun. Mag.40(5), 138–147 (2002). [CrossRef]
  3. M. Wasfi, “Optical fiber amplifiers – review,” Int. J. Commun. Netw. Inf. Secur.1, 42–47 (2009).
  4. D. Richardson, J. Nilsson, and W. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B27(11), B63–B92 (2010). [CrossRef]
  5. H. Ahmad, M. Z. Zulkifli, A. A. Latif, K. Thambiratnam, and S. W. Harun, “17-channels S band multiwavelength brillouin/erbium fiber laser co-pump with Raman source,” Laser Phys.19(12), 2188–2193 (2009). [CrossRef]
  6. K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett.4(1), 69–72 (1992). [CrossRef]
  7. E. Yahel and A. Hardy, “Amplified spontaneous emission in high-power, Er3+/Yb3+ codoped fiber amplifiers for wavelength-division-multiplexing applications,” J. Opt. Soc. Am. B20(6), 1198–1203 (2003). [CrossRef]
  8. M. J. Yadlowsky, E. M. Deliso, and V. L. Da Silva, “Optical fibers and amplifiers for WDM systems,” Proc. IEEE85(11), 1765–1779 (1997). [CrossRef]
  9. E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glass,” Opt. Mater.5(3), 159–167 (1996). [CrossRef]
  10. D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B Condens. Matter53(5), 2334–2344 (1996). [CrossRef] [PubMed]
  11. M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Wideband EDFA based on erbium doped crystalline zirconia yttria alumino silicate fiber,” J. Lightwave Technol.28(20), 2919–2924 (2010). [CrossRef]
  12. M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifiers,” Opt. Lett.35(17), 2882–2884 (2010). [CrossRef] [PubMed]
  13. J. R. Armitage, “Spectral dependence of the small-signal gain around 1.5 μm in erbium doped silica fiber amplifiers,” IEEE J. Quantum Electron.26(3), 423–425 (1990). [CrossRef]
  14. B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. C. Larsen, “The design of erbium-doped fiber amplifiers,” J. Lightwave Technol.9(9), 1105–1112 (1991). [CrossRef]
  15. J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” J. Appl. Phys.93(2), 977–983 (2003). [CrossRef]
  16. P. Peterka, B. Faure, W. Blanc, M. Karásek, and B. Dussardier, “Theoretical modeling of S-band thulium-doped silica fiber amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004). [CrossRef]
  17. R.-J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross phase modulation and four-wave-mixing in high speed TDM systems,” Electron. Lett.35(18), 1576–1578 (1999). [CrossRef]
  18. I. Shake, H. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett.34(22), 2152–2154 (1998). [CrossRef]
  19. N. Kashyap, P. H. Siegel, and A. Vardy, “Coding for the optical channel: the ghost-pulse constraint,” IEEE Trans. Inf. Theory52(1), 64–77 (2006). [CrossRef]
  20. S. Harun, R. Parvizi, S. Shahi, and H. Ahmad, “Multi-wavelength erbium-doped fiber laser assisted by four-wave mixing effect,” Laser Phys. Lett.6(11), 813–815 (2009). [CrossRef]
  21. X. F. Yang, X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, “Multi-wavelength erbium doped fiber laser with 0.8 nm spacing using sampled Bragg grating and photonic crystal fiber,” IEEE Photon. Technol. Lett.17(12), 2538–2540 (2005). [CrossRef]
  22. H. Ahmad, M. C. Paul, N. A. Awang, S. W. Harun, M. Pal, and K. Thambiratnam, “Four-wave-mixing in zirconia-yttria-aluminum erbium codoped silica fiber,” J. Eur. Opt. Soc. Rapid Publ.7, 12011 (2012). [CrossRef]
  23. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011). [CrossRef]
  24. R. J. Williams, N. Jovanovic, G. D. Marshall, and M. J. Withford, “All-optical, actively Q-switched fiber laser,” Opt. Express18(8), 7714–7723 (2010). [CrossRef] [PubMed]
  25. W.-J. Cao, H.-Y. Wang, A.-P. Luo, Z.-C. Luo, and W.-C. Xu, “Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser,” Laser Phys. Lett.9(1), 54–58 (2012). [CrossRef]
  26. M. L. Siniaeva, M. N. Siniavsky, V. P. Pashinin, A. A. Mamedov, V. I. Konov, and V. V. Kononenko, “Laser ablation of dental materials using microsecond Nd:YAG laser,” Laser Phys.19(5), 1056–1060 (2009). [CrossRef]
  27. H. Q. Shangguan, L. W. Casperson, A. Shearin, K. W. Gregory, and S. A. Prahl, “Drug delivery with microsecond laser pulses into gelatin,” Appl. Opt.35(19), 3347–3357 (1996). [CrossRef] [PubMed]
  28. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008). [CrossRef] [PubMed]
  29. A. G. Rozhin, V. Scardaci, F. Wang, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Generation of ultra-fast laser pulses using nanotube mode-lockers,” Phys. Status Solidi B243(13), 3551–3555 (2006). [CrossRef]
  30. T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, “Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes,” Opt. Express13(20), 8025–8031 (2005). [CrossRef] [PubMed]
  31. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited