OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 12 — Dec. 1, 2012
  • pp: 1702–1712

Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs

G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 12, pp. 1702-1712 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3243 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Five different chiral metamaterials in the terahertz (THz) regime, fabricated on fully flexible polyimide substrates, are comparatively studied via numerical calculations and experimental measurements. The chiral properties of these metamaterials, which are discussed based on their optical activity, circular dichroism, and the retrieved effective parameters, show pronounced pure optical activity (larger than 300°/wavelength), as well as important circular polarization generation and filtering capabilities. Negative refractive index is also obtained for all the considered designs.

© 2012 OSA

OCIS Codes
(160.1585) Materials : Chiral media
(160.3918) Materials : Metamaterials

ToC Category:
Chiral Media

Original Manuscript: August 10, 2012
Revised Manuscript: September 19, 2012
Manuscript Accepted: September 20, 2012
Published: November 1, 2012

G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, "Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs," Opt. Mater. Express 2, 1702-1712 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp.10(4), 509–514 (1968). [CrossRef]
  2. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004). [CrossRef] [PubMed]
  3. C. M. Soukoulis, M. Kafesaki, and E. N. Economou, “Negative index materials: new frontiers in optics,” Adv. Mater.18(15), 1941–1952 (2006). [CrossRef]
  4. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007). [CrossRef]
  5. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science315(5808), 47–49 (2007). [CrossRef] [PubMed]
  6. M. Wegener and S. Linden, “Giving light yet another new twist,” Physics2, 3–6 (2009). [CrossRef]
  7. J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B86(3), 035448 (2012). [CrossRef]
  8. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009). [CrossRef] [PubMed]
  9. R. Zhao, J. Zhou, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir force in chiral metamaterials,” Phys. Rev. Lett.103(10), 103602 (2009). [CrossRef] [PubMed]
  10. R. Zhao, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir forces with finite-thickness slabs,” Phys. Rev. B83(7), 075108 (2011). [CrossRef]
  11. J. B. Pendry, “A chiral route to negative refraction,” Science306(5700), 1353–1355 (2004). [CrossRef] [PubMed]
  12. S. Tretyakov, A. Sihvola, and L. Jylhä, “Backward-wave regime and negative refraction in chiral composites,” Photonics Nanostruct. Fundam. Appl.3(2-3), 107–115 (2005). [CrossRef]
  13. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006). [CrossRef] [PubMed]
  14. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett.94(13), 131901 (2009). [CrossRef]
  15. S. V. Zhukovsky, A. V. Novitsky, and V. M. Galynsky, “Elliptical dichroism: operating principle of planar chiral metamaterials,” Opt. Lett.34(13), 1988–1990 (2009). [CrossRef] [PubMed]
  16. S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett.36(12), 2278–2280 (2011). [CrossRef] [PubMed]
  17. A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: microscopic Lorentz-theory approach,” Phys. Rev. B86(7), 075138 (2012). [CrossRef]
  18. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B80(15), 153104 (2009). [CrossRef]
  19. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express18(12), 13044–13050 (2010). [CrossRef] [PubMed]
  20. B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A76(2), 023811 (2007). [CrossRef]
  21. D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express16(16), 11802–11807 (2008). [CrossRef] [PubMed]
  22. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007). [CrossRef] [PubMed]
  23. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007). [CrossRef]
  24. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater.1(1), 26–33 (2002). [CrossRef] [PubMed]
  25. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009). [CrossRef] [PubMed]
  26. W.-H. Sun, Y.-J. Bao, M. Wang, and R.-W. Peng, “C. Sun X. Lu, J. Shao, Z-F. Li, and N-B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B81, 075119 (2010).
  27. J. Zhou, J. Dong, B. Wang, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104(R) (2009). [CrossRef]
  28. B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett.94(15), 151112 (2009). [CrossRef]
  29. B. Wang, J. Zhou, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt.11(11), 114003 (2009). [CrossRef]
  30. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006). [CrossRef] [PubMed]
  31. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett.34(16), 2501–2503 (2009). [CrossRef] [PubMed]
  32. A. Andryieuski, C. Menzel, C. Rockstuhl, R. Malureanu, F. Lederer, and A. Lavrinenko, “Homogenization of resonant chiral metamaterials,” Phys. Rev. B82(23), 235107 (2010). [CrossRef]
  33. N. Liu and H. Giessen, “Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling,” Opt. Express16(26), 21233–21238 (2008). [CrossRef] [PubMed]
  34. R. Zhao, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Comparison of chiral metamaterial designs for repulsive Casimir force,” Phys. Rev. B81(23), 235126 (2010). [CrossRef]
  35. Z. Li, R. Zhao, Th. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four ‘U’ split ring resonators,” Appl. Phys. Lett.97(8), 081901 (2010). [CrossRef]
  36. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010). [CrossRef] [PubMed]
  37. R. Zhao, L. Zhang, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83(3), 035105 (2011). [CrossRef]
  38. C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A82(5), 053811 (2010). [CrossRef]
  39. M. Kafesaki, I. Tsiapa, N. Katsarakis, Th. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: the fishnet structure and its variations,” Phys. Rev. B75(23), 235114 (2007). [CrossRef]
  40. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).
  41. J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, Cambridge, MA, 2008).
  42. R. Zhao, Th. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt. Express18(14), 14553–14567 (2010). [CrossRef] [PubMed]
  43. S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat Commun3, 942 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited