OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 12 — Dec. 1, 2012
  • pp: 1713–1722

Probing near Dirac point electron-phonon interaction in graphene

Jingzhi Shang, Suxia Yan, Chunxiao Cong, Howe-Siang Tan, Ting Yu, and Gagik G. Gurzadyan  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 12, pp. 1713-1722 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2536 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Carrier dynamics in graphene films on CaF2 have been measured in the mid infrared region by femtosecond pump-probe spectroscopy. The relaxation kinetics shows two decay times. The fast time component is ~0.2 ps, which is attributed to the mixture of initial few ultrafast intraband and interband decay channels. The slow component is ~1.5 ps, which is primarily assigned to optical phonon-acoustic phonon scattering. The contribution of fast component exhibits an increase trend in the probe photon frequencies from 2600 to 3100 cm−1. At the probe frequency of 2700 cm−1, the accelerated carrier relaxation was detected, which resulted from the interband triple-resonance electron-phonon scattering in graphene. At the probe frequency of 3175 cm−1, a clear instant negative differential transmission signal was observed, which is due to stimulated two-phonon emission involved with G phonons in graphene. This result indicates that graphene can be used as a source of coherent ultrashort sound-wave emission.

© 2012 OSA

OCIS Codes
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: September 13, 2012
Revised Manuscript: October 18, 2012
Manuscript Accepted: October 21, 2012
Published: November 5, 2012

Jingzhi Shang, Suxia Yan, Chunxiao Cong, Howe-Siang Tan, Ting Yu, and Gagik G. Gurzadyan, "Probing near Dirac point electron-phonon interaction in graphene," Opt. Mater. Express 2, 1713-1722 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Geim, “Graphene: status and prospects,” Science324(5934), 1530–1534 (2009). [CrossRef] [PubMed]
  2. K. S. Novoselov, “Nobel lecture: graphene: materials in the flatland,” Rev. Mod. Phys.83(3), 837–849 (2011). [CrossRef]
  3. A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009). [CrossRef]
  4. S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys.83(2), 407–470 (2011). [CrossRef]
  5. E. H. Hwang, B. Y.-K. Hu, and S. Das Sarma, “Inelastic carrier lifetime in graphene,” Phys. Rev. B76(11), 115434 (2007). [CrossRef]
  6. C.-H. Park, F. Giustino, M. L. Cohen, and S. G. Louie, “Velocity renormalization and carrier lifetime in graphene from the electron-phonon interaction,” Phys. Rev. Lett.99(8), 086804 (2007). [CrossRef] [PubMed]
  7. J. González and E. Perfetto, “Unconventional quasiparticle lifetime in graphene,” Phys. Rev. Lett.101(17), 176802 (2008). [CrossRef] [PubMed]
  8. R. Kim, V. Perebeinos, and P. Avouris, “Relaxation of optically excited carriers in graphene,” Phys. Rev. B84(7), 075449 (2011). [CrossRef]
  9. J. Shang, Z. Luo, C. Cong, J. Lin, T. Yu, and G. G. Gurzadyan, “Femtosecond UV-pump/visible-probe measurements of carrier dynamics in stacked graphene films,” Appl. Phys. Lett.97(16), 163103 (2010). [CrossRef]
  10. J. Shang, T. Yu, and G. G. Gurzadyan, “Femtosecond energy relaxation in suspended graphene: phonon-assisted spreading of quasiparticle distribution,” Appl. Phys. B107(1), 131–136 (2012). [CrossRef]
  11. Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res.4(3), 297–307 (2011). [CrossRef]
  12. F. Carbone, G. Aubock, A. Cannizzo, F. Van Mourik, R. R. Nair, A. K. Geim, K. S. Novoselov, and M. Chergui, “Femtosecond carrier dynamics in bulk graphite and graphene paper,” Chem. Phys. Lett.504(1-3), 37–40 (2011). [CrossRef]
  13. J. Shang, T. Yu, J. Lin, and G. G. Gurzadyan, “Ultrafast electron-optical phonon scattering and quasiparticle lifetime in CVD-grown graphene,” ACS Nano5(4), 3278–3283 (2011). [CrossRef] [PubMed]
  14. M. Breusing, S. Kuehn, T. Winzer, E. Malic, F. Milde, N. Severin, J. P. Rabe, C. Ropers, A. Knorr, and T. Elsaesser, “Ultrafast nonequilibrium carrier dynamics in a single graphene layer,” Phys. Rev. B83(15), 153410 (2011). [CrossRef]
  15. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett.92(4), 042116 (2008). [CrossRef]
  16. L. Huang, G. V. Hartland, L.-Q. Chu, R. M. Luxmi, R. M. Feenstra, C. Lian, K. Tahy, and H. Xing, “Ultrafast transient absorption microscopy studies of carrier dynamics in epitaxial graphene,” Nano Lett.10(4), 1308–1313 (2010). [CrossRef] [PubMed]
  17. H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett.96(8), 081917 (2010). [CrossRef]
  18. B. Gao, G. Hartland, T. Fang, M. Kelly, D. Jena, H. G. Xing, and L. Huang, “Studies of intrinsic hot phonon dynamics in suspended graphene by transient absorption microscopy,” Nano Lett.11(8), 3184–3189 (2011). [CrossRef] [PubMed]
  19. P. J. Hale, S. M. Hornett, J. Moger, D. W. Horsell, and E. Hendry, “Hot phonon decay in supported and suspended exfoliated graphene,” Phys. Rev. B83(12), 121404 (2011). [CrossRef]
  20. P. A. Obraztsov, M. G. Rybin, A. V. Tyurnina, S. V. Garnov, E. D. Obraztsova, A. N. Obraztsov, and Y. P. Svirko, “Broadband light-induced absorbance change in multilayer graphene,” Nano Lett.11(4), 1540–1545 (2011). [CrossRef] [PubMed]
  21. D. Sun, Z.-K. Wu, C. Divin, X. Li, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett.101(15), 157402 (2008). [CrossRef] [PubMed]
  22. K.-J. Yee, J.-H. Kim, M. H. Jung, B. H. Hong, and K.-J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon49(14), 4781–4785 (2011). [CrossRef]
  23. D. Sun, C. Divin, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Hot carrier cooling by acoustic phonons in epitaxial graphene by ultrafast pump-probe spectroscopy,” Phys. Status Solidi C8(4), 1194–1197 (2011). [CrossRef]
  24. T. Limmer, A. J. Houtepen, A. Niggebaum, R. Tautz, and E. Da Como, “Influence of carrier density on the electronic cooling channels of bilayer graphene,” Appl. Phys. Lett.99(10), 103104 (2011). [CrossRef]
  25. S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, W. A. de Heer, H. Schneider, and M. Helm, “Carrier relaxation in epitaxial graphene photoexcited near the Dirac point,” Phys. Rev. Lett.107(23), 237401 (2011). [CrossRef] [PubMed]
  26. P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Lett.8(12), 4248–4251 (2008). [CrossRef] [PubMed]
  27. H. Choi, F. Borondics, D. A. Siegel, S. Y. Zhou, M. C. Martin, A. Lanzara, and R. A. Kaindl, “Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene,” Appl. Phys. Lett.94(17), 172102 (2009). [CrossRef]
  28. J. H. Strait, H. Wang, S. Shivaraman, V. Shields, M. Spencer, and F. Rana, “Very slow cooling dynamics of photoexcited carriers in graphene observed by optical-pump terahertz-probe spectroscopy,” Nano Lett.11(11), 4902–4906 (2011). [CrossRef] [PubMed]
  29. A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, “Quasiparticle dynamics in graphene,” Nat. Phys.3(1), 36–40 (2007). [CrossRef]
  30. S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D.-H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, “Substrate-induced bandgap opening in epitaxial graphene,” Nat. Mater.6(10), 770–775 (2007). [CrossRef] [PubMed]
  31. Y. Liu, L. Zhang, M. K. Brinkley, G. Bian, T. Miller, and T.-C. Chiang, “Phonon-induced gaps in graphene and graphite observed by angle-resolved photoemission,” Phys. Rev. Lett.105(13), 136804 (2010). [CrossRef] [PubMed]
  32. D. A. Siegel, C.-H. Park, C. Hwang, J. Deslippe, A. V. Fedorov, S. G. Louie, and A. Lanzara, “Many-body interactions in quasi-freestanding graphene,” Proc. Natl. Acad. Sci. U.S.A.108(28), 11365–11369 (2011). [CrossRef] [PubMed]
  33. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008). [CrossRef] [PubMed]
  34. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep.473(5-6), 51–87 (2009). [CrossRef]
  35. R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, and M. S. Dresselhaus, “Raman spectroscopy of graphene and carbon nanotubes,” Adv. Phys.60(3), 413–550 (2011). [CrossRef]
  36. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett.6(12), 2667–2673 (2006). [CrossRef] [PubMed]
  37. Z. Ni, Y. Wang, T. Yu, and Z. Shen, “Raman spectroscopy and imaging of graphene,” Nano Res.1(4), 273–291 (2008). [CrossRef]
  38. F. Rana, “Electron-hole generation and recombination rates for coulomb scattering in graphene,” Phys. Rev. B76(15), 155431 (2007). [CrossRef]
  39. F. Rana, P. A. George, J. H. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, and M. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,” Phys. Rev. B79(11), 115447 (2009). [CrossRef]
  40. K. M. Borysenko, J. T. Mullen, E. A. Barry, S. Paul, Y. G. Semenov, J. M. Zavada, M. B. Nardelli, and K. W. Kim, “First-principles analysis of electron-phonon interactions in graphene,” Phys. Rev. B81(12), 121412 (2010). [CrossRef]
  41. T. Winzer, A. Knorr, and E. Malic, “Carrier multiplication in graphene,” Nano Lett.10(12), 4839–4843 (2010). [CrossRef] [PubMed]
  42. F. Rana, J. H. Strait, H. Wang, and C. Manolatou, “Ultrafast carrier recombination and generation rates for plasmon emission and absorption in graphene,” Phys. Rev. B84(4), 045437 (2011). [CrossRef]
  43. E. Malic, T. Winzer, E. Bobkin, and A. Knorr, “Microscopic theory of absorption and ultrafast many-particle kinetics in graphene,” Phys. Rev. B84(20), 205406 (2011). [CrossRef]
  44. A. L. Walter, A. Bostwick, K.-J. Jeon, F. Speck, M. Ostler, T. Seyller, L. Moreschini, Y. J. Chang, M. Polini, R. Asgari, A. H. MacDonald, K. Horn, and E. Rotenberg, “Effective screening and the plasmaron bands in graphene,” Phys. Rev. B84(8), 085410 (2011). [CrossRef]
  45. K. Kang, D. Abdula, D. G. Cahill, and M. Shim, “Lifetimes of optical phonons in graphene and graphite by time-resolved incoherent anti-Stokes Raman scattering,” Phys. Rev. B81(16), 165405 (2010). [CrossRef]
  46. W.-K. Tse and S. Das Sarma, “Energy relaxation of hot Dirac fermions in graphene,” Phys. Rev. B79(23), 235406 (2009). [CrossRef]
  47. Z. Luo, T. Yu, J. Shang, Y. Wang, S. Lim, L. Liu, G. G. Gurzadyan, Z. Shen, and J. Lin, “Large-scale synthesis of bi-Layer graphene in strongly coupled stacking order,” Adv. Funct. Mater.21(5), 911–917 (2011). [CrossRef]
  48. C. Thomsen and S. Reich, “Double resonant raman scattering in graphite,” Phys. Rev. Lett.85(24), 5214–5217 (2000). [CrossRef] [PubMed]
  49. I. Kupčic, “Triple-resonant two-phonon Raman scattering in graphene,” J. Raman Spectrosc.43(1), 1–5 (2012). [CrossRef]
  50. J. Kürti, V. Zolyomi, A. Gruneis, and H. Kuzmany, “Double resonant Raman phenomena enhanced by Van Hove singularities in single-wall carbon nanotubes,” Phys. Rev. B65(16), 165433 (2002). [CrossRef]
  51. S. Wu, L. Jing, Q. Li, Q. W. Shi, J. Chen, H. Su, X. Wang, and J. Yang, “Average density of states in disordered graphene systems,” Phys. Rev. B77(19), 195411 (2008). [CrossRef]
  52. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005). [CrossRef] [PubMed]
  53. J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and A. Yacoby, “Observation of electron–hole puddles in graphene using a scanning single-electron transistor,” Nat. Phys.4(2), 144–148 (2008). [CrossRef]
  54. Y. Zhang, V. W. Brar, C. Girit, A. Zettl, and M. F. Crommie, “Origin of spatial charge inhomogeneity in graphene,” Nat. Phys.5(10), 722–726 (2009). [CrossRef]
  55. K. Ziegler, B. Dóra, and P. Thalmeier, “Density of states in disordered graphene,” Phys. Rev. B79(23), 235431 (2009). [CrossRef]
  56. R. Xiao, F. Tasnadi, K. Koepernik, J. W. F. Venderbos, M. Richter, and M. Taut, “Density functional investigation of rhombohedral stacks of graphene: topological surface states, nonlinear dielectric response, and bulk limit,” Phys. Rev. B84(16), 165404 (2011). [CrossRef]
  57. B. A. Ruzicka, S. Wang, J. Liu, K.-P. Loh, J. Z. Wu, and H. Zhao, “Spatially resolved pump-probe study of single-layer graphene produced by chemical vapor deposition,” Opt. Mater. Express2(6), 708–716 (2012). [CrossRef]
  58. W. E. Bron and W. Grill, “Stimulated phonon emission,” Phys. Rev. Lett.40(22), 1459–1463 (1978). [CrossRef]
  59. P. Hu, “Stimulated emission of 29-cm−1 phonons in ruby,” Phys. Rev. Lett.44(6), 417–420 (1980). [CrossRef]
  60. L. G. Tilstra, A. F. M. Arts, and H. W. de Wijn, “Coherence of phonon avalanches in ruby,” Phys. Rev. B68(14), 144302 (2003). [CrossRef]
  61. L. G. Tilstra, A. F. M. Arts, and H. W. de Wijn, “Optically excited ruby as a saser: experiment and theory,” Phys. Rev. B76(2), 024302 (2007). [CrossRef]
  62. K. Vahala, M. Herrmann, S. Knünz, V. Batteiger, G. Saathoff, T. W. Hänsch, and T. Udem, “A phonon laser,” Nat. Phys.5(9), 682–686 (2009). [CrossRef]
  63. P. M. Walker, A. J. Kent, M. Henini, B. A. Glavin, V. A. Kochelap, and T. L. Linnik, “Terahertz acoustic oscillations by stimulated phonon emission in an optically pumped superlattice,” Phys. Rev. B79(24), 245313 (2009). [CrossRef]
  64. R. P. Beardsley, A. V. Akimov, M. Henini, and A. J. Kent, “Coherent terahertz sound amplification and spectral line narrowing in a stark ladder superlattice,” Phys. Rev. Lett.104(8), 085501 (2010). [CrossRef] [PubMed]
  65. I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett.104(8), 083901 (2010). [CrossRef] [PubMed]
  66. T. Winzer, E. Malic, and A. Knorr, “Microscopic mechanism for transient population inversion and optical gain in graphene,” arXiv:1209.4833v1 (Sep 21, 2012), http://arxiv.org/abs/1209.4833 .
  67. T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett.108(16), 167401 (2012). [CrossRef] [PubMed]
  68. S. Yan, M. T. Seidel, Z. Zhang, W. K. Leong, and H.-S. Tan, “Ultrafast vibrational relaxation dynamics of carbonyl stretching modes in Os3(CO)12.,” J. Chem. Phys.135(2), 024501 (2011). [CrossRef] [PubMed]
  69. S. Ullrich, T. Schultz, M. Z. Zgierski, and A. Stolow, “Electronic relaxation dynamics in DNA and RNA bases studied by time-resolved photoelectron spectroscopy,” Phys. Chem. Chem. Phys.6(10), 2796–2801 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited