OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 12 — Dec. 1, 2012
  • pp: 1751–1759

Time resolved measurements of gratings photo-induced by femtosecond pulses in a lead doped glass

S. Chouli and E. Freysz  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 12, pp. 1751-1759 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1585 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the formation of gratings photo-induced by femtosecond laser pulses in SF59 glass. Depending on the number of pulses used to excite the sample and the pump power density, transient or permanent gratings are induced. We demonstrate that the grating formation is not instantaneous and is produced by laser-induced defects. This results in a change of both the real and imaginary part of the index of refraction. A simple set-up that records the temporal evolution of both parameters during the laser excitation is also presented. It makes it possible to evaluate the weight of both contributions to the grating diffraction efficiency.

© 2012 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3440) Lasers and laser optics : Laser-induced breakdown
(160.2750) Materials : Glass and other amorphous materials
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Laser Materials Processing

Original Manuscript: September 11, 2012
Revised Manuscript: October 22, 2012
Manuscript Accepted: November 6, 2012
Published: November 8, 2012

S. Chouli and E. Freysz, "Time resolved measurements of gratings photo-induced by femtosecond pulses in a lead doped glass," Opt. Mater. Express 2, 1751-1759 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, “Femtosecond laser direct writing of multiwavelength Bragg grating waveguides in glass,” Opt. Lett.31(23), 3495–3497 (2006). [CrossRef] [PubMed]
  2. H. Zhang, S. M. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett.32(17), 2559–2561 (2007). [CrossRef] [PubMed]
  3. W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2(2), 99–104 (2008). [CrossRef]
  4. M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express1(4), 711–723 (2011). [CrossRef]
  5. J. B. Lonzaga, S. M. Avanesyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys.94(7), 4332–4340 (2003). [CrossRef]
  6. G. Lin, F. Luo, F. He, Q. Chen, D. Chen, Y. Cheng, L. Zhang, J. Qiu, and Q. Zhao, “Different refractive index change behavior in borosilicate glasses induced by 1 kHz and 250 kHz femtosecond lasers,” Opt. Mater. Express1(4), 724–731 (2011). [CrossRef]
  7. H. Guillet de Chatellus and E. Freysz, “Characterization and dynamics of gratings induced in glasses by femtosecond pulses,” Opt. Lett.27(13), 1165–1167 (2002). [CrossRef] [PubMed]
  8. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express18(19), 19844–19859 (2010). [CrossRef] [PubMed]
  9. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40(19), 1170–1172 (2004). [CrossRef]
  10. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol.22(1), 94–100 (2004). [CrossRef]
  11. D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.16(8), 1864–1866 (2004). [CrossRef]
  12. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express1(4), 754–765 (2011). [CrossRef]
  13. Ch. Voigtländer, R. G. Becker, J. Thomas, D. Richter, A. Singh, A. Tünnermann, and S. Nolte, “Ultrashort pulse inscription of tailored fiber Bragg gratings with a phase mask and a deformed wavefront,” Opt. Mater. Express1(4), 633–642 (2011). [CrossRef]
  14. M. Bernier, S. Gagnon, and R. Vallée, “Role of the 1D optical filamentation process in the writing of first order fiber Bragg gratings with femtosecond pulses at 800nm,” Opt. Mater. Express1(5), 832–844 (2011). [CrossRef]
  15. M. Ghanassi, M. C. Schanne-Klein, F. Hache, A. I. Ekimov, D. Ricard, and C. Flytzanis, “Time-resolved measurements of carrier recombination in experimental seconductor-doped glasses: confirmation of the role of Auger recombination,” Appl. Phys. Lett.62(1), 78–80 (1993). [CrossRef]
  16. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2948 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited