OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 12 — Dec. 1, 2012
  • pp: 1760–1767

The increase of the light transparency induced by a magnetic field for the colloid film based on α–FeOOH nanoparticles

Jian Li, Anrong Wang, Yueqiang Lin, Xiaodong Liu, Jun Fu, Lihua Lin, and Longlong Chen  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 12, pp. 1760-1767 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1019 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



α–FeOOH nanoparticles are spherical and weakly magnetic. The size of the particles is about 8 nm, so they are regarded as Rayleigh scatterers. Aqueous colloids based on these particles exhibit magnetically enhanced transmission of light; the relative transmission coefficient reaches almost 1.3 when H = 500 Oe. Since the magnetic interaction between the particles is too weak to form chain-like aggregates, the enhancing effect is mainly attributed to the variation of the absorption cross-sections of the colloidal system in relation to the coupling of magnetic and dielectric properties of the particles. Along the direction of the external magnetic field, the absorption cross-section of the colloid decreases so that the transmitted light parallel to the field direction is enhanced and increases with the field. The results of this investigation indicate that there could be potential applications for weakly magnetic colloids based on non-cubical nanocrystals.

© 2012 OSA

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(350.4990) Other areas of optics : Particles

ToC Category:
Magneto-optic Materials

Original Manuscript: August 30, 2012
Revised Manuscript: October 17, 2012
Manuscript Accepted: November 5, 2012
Published: November 8, 2012

Jian Li, Anrong Wang, Yueqiang Lin, Xiaodong Liu, Jun Fu, Lihua Lin, and Longlong Chen, "The increase of the light transparency induced by a magnetic field for the colloid film based on α–FeOOH nanoparticles," Opt. Mater. Express 2, 1760-1767 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Klapp, “Dipolar fluids under external perturbations,” J. Phys. Condens. Matter17(15), R525–R550 (2005). [CrossRef]
  2. B. Huke and M. Lücke, “Magnetic properties of colloidal suspension of interacting magnetic particles,” Rep. Prog. Phys.67(10), 1731–1768 (2004). [CrossRef]
  3. S. Odenbach, “Ferrofluids—magnetically controlled suspensions,” Colloids Surf. A Physicochem. Eng. Asp.217(1-3), 171–178 (2003). [CrossRef]
  4. J. E. Martin, K. M. Hill, and C. P. Tigges, “Magnetic-field-induced optical transmittance in colloidal suspensions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics59(5), 5676–5692 (1999). [CrossRef] [PubMed]
  5. S. Yang, Y. Chiu, B. Jeang, H. Horng, C. Hong, and H. Yang, “Origin of field-dependent optical transmission of magnetic fluid film,” Appl. Phys. Lett.79(15), 2372–2374 (2001). [CrossRef]
  6. H. Horng, S. Yang, W. Tse, H. Yang, W. Luo, and C. Hong, “Magnetically modulated optical transmission of magnetic fluid films,” J. Magn. Magn. Mater.252, 104–106 (2002). [CrossRef]
  7. H. E. Horng, C. S. Chen, K. L. Fang, S. Y. Yang, J. J. Chieh, C.-Y. Hong, and H. C. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett.85(23), 5592–5594 (2004). [CrossRef]
  8. K. Wu, Y. Yao, G. Rao, Y. Chen, and J. Chen, “Magnetic field induced optical variation in nanosize iron oxide fluid-particles,” Microelectron. Eng.81(2-4), 323–328 (2005). [CrossRef]
  9. G. Fosa, R. Bădescu, G. Călugăru, and V. Bădescu, “Measuring the transmittivity of light: a tool for testing the quality of magnetic liquids,” Opt. Mater.28(4), 461–465 (2006). [CrossRef]
  10. H.-D. Deng, J. Liu, W.-R. Zhao, W. Zhang, X.-S. Lin, T. Sun, Q.-F. Dai, L.-J. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” Appl. Phys. Lett.92(23), 233103 (2008). [CrossRef]
  11. D. Zhang, Z. Di, Y. Zou, and X. Chen, “Temperature sensor using ferrofluid thin film,” Microfluid. Nanofluid.7(1), 141–144 (2009). [CrossRef]
  12. S. Pu, L. Yao, F. Guan, and M. Liu, “Threshold-tunable optical limiters based on nonlinear refraction in ferrosols,” Opt. Commun.282(5), 908–913 (2009). [CrossRef]
  13. Y. Zou, Z. Di, and X. Chen, “Agglomeration response of nanoparticles in magnetic fluid via monitoring of light transmission,” Appl. Opt.50(8), 1087–1090 (2011). [CrossRef] [PubMed]
  14. J. Li, Y. Huang, X. Liu, Y. Lin, Q. Li, and R. Gao, “Coordinated chain notion resulting in intensity variation of light transmitted through ferrofluid film,” Phys. Lett. A372(46), 6952–6955 (2008). [CrossRef]
  15. J. Miles, R. Chantrell, and M. Parker, “Model of magnetic-field-induced ordering in dispersions of fine paramagnetic particles,” J. Appl. Phys.57(8), 4271–4273 (1985). [CrossRef]
  16. K. Zahn, J. Méndez-Alcaraz, and G. Maret, “Hydrodynamic interactions may enhance the self-diffusion of colloidal particles,” Phys. Rev. Lett.79(1), 175–178 (1997). [CrossRef]
  17. K. Zahn, R. Lenke, and G. Maret, “Two-stage melt of paramagnetic colloidal crystals in two dimensions,” Phys. Rev. Lett.82(13), 2721–2724 (1999). [CrossRef]
  18. K. Mangold, P. Leiderer, and C. Bechinger, “Phase transitions of colloidal monolayers in periodic pinning arrays,” Phys. Rev. Lett.90(15), 158302 (2003). [CrossRef] [PubMed]
  19. W. Schuele and V. Deetscreek, “Appearance of weak ferromagnetism in fine particles of antiferromagnetic materials,” J. Appl. Phys.33(3), 1136–1137 (1962). [CrossRef]
  20. M. S. Seehra, V. S. Babu, A. Manivannan, and J. Lynn, “Neutron scattering and magnetic studies of ferrhydrite nanoparticles,” Phys. Rev. B61(5), 3513–3518 (2000). [CrossRef]
  21. H. Miao, J. Li, Y. Lin, X. Liu, Q. Zhang, and J. Fu, “Characterization of γ-Fe2O3 nanoparticles prepared by transformation of α-FeOOH,” Chin. Sci. Bull.56(22), 2383–2388 (2011). [CrossRef]
  22. A. Wang, J. Li, and R. Gao, “The structural force arising from magnetic interactions in polydisperse ferrofluids,” Appl. Phys. Lett.94(21), 212501 (2009). [CrossRef]
  23. R. Massart, “Preparation of aqueous magnetic liquids in alkaline and acidic media,” IEEE Trans. Magn.17(2), 1247–1248 (1981). [CrossRef]
  24. J. Li, X.-D. Liu, Y.-Q. Lin, Y. Huang, and L. Bai, “Relaxation behavior measuring of transmitted light through ferrofluids film,” Appl. Phys. B82(1), 81–84 (2006). [CrossRef]
  25. S. Taketomi, M. Ukita, M. Mizukami, H. Miyajima, and S. Chikazumi, “Magnetooptical effects of magnetic fluid,” J. Phys. Soc. Jpn.56(9), 3362–3374 (1987). [CrossRef]
  26. J. J. Cerdà, E. Elfimova, V. Ballenegger, E. Krutikova, A. Ivanov, and C. Holm, “Behavior of bulky ferrofluids in the diluted low-coupling regime: theory and simulation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(1), 011501 (2010). [CrossRef] [PubMed]
  27. E. A. Elfimova, A. O. Ivanov, and P. J. Camp, “Theory and simulation of anisotropic pair correlations in ferrofluids in magnetic fields,” J. Chem. Phys.136(19), 194502 (2012). [CrossRef] [PubMed]
  28. A. Yu. Zubarev and L. Yu. Iskakova, “Structural transformations in polydisperse ferrofluids,” Colloid J.65(6), 711–719 (2003). [CrossRef]
  29. A. Yu. Zubarev, J. Fleischer, and S. Odenbach, “Towards a theory of dynamical properties of polydisperse magnetic fluids: effect of chain-like aggregates,” Physica A358(2-4), 475–491 (2005). [CrossRef]
  30. J. Fu, J. Li, Y. Q. Lin, X. D. Liu, H. Miao, and L. H. Lin, “Study of magneto-optical effects in γ-Fe2O3/ZnFe2O4 nanoparticle ferrofluids, using circularly polarized light,” Sci. China Phys. Mech. Astron.55(8), 1404–1411 (2012). [CrossRef]
  31. C. Sorfactant, “Scattering and Absorption of Light by Particles and Aggregates,” in Handbook of Surface and Colloidal Chemistry, K. S. Birdi, ed. (CRC Press, 1997), pp. 533–558.
  32. L. Landau, E. Lifshitz, and L. Pitaevskii, Electrodynamics of Continuous Media (Butterworth-Heinemann, 1995), p. 285.
  33. D. E. Madsen, L. Cervera-Gontard, T. Kasama, R. E. Dunin-Borkowski, C. B. Koch, M. F. Hansen, C. Frandsen, and S. Mørup, “Magnetic fluctuations in nanosized goethite (α-FeOOH) grains,” J. Phys. Condens. Matter21(1), 016007 (2009). [CrossRef] [PubMed]
  34. J. Li, X. Qiu, Y. Lin, X. Liu, H. Miao, J. Fu, and Q. Zhang, “An optical effect arising from the coupling of the magnetic and dielectric properties of colloidal particles,” Opt. Express (submitted).
  35. B. J. Lemaire, P. Davidson, J. Ferré, J. P. Jamet, P. Panine, I. Dozov, and J. P. Jolivet, “Outstanding magnetic properties of nematic suspensions of goethite (α-FeOOH) nanorods,” Phys. Rev. Lett.88(12), 125507 (2002). [CrossRef] [PubMed]
  36. H. Mukai, S. Shibli, and P. Fernandes, “Orientational order studies by magneto-optical and light-effects in lyotropic liquid crystal,” J. Mol. Liq.135(1-3), 53–56 (2007). [CrossRef]
  37. B. Berkovsy, V. Medvedev, and M. Krakov, Magnetic Fluids Engineering Application (Oxford University Press, 1993), p. 26.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited