OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 12 — Dec. 1, 2012
  • pp: 1768–1775

Spatially resolved Raman analysis of laser induced refractive index variation in chalcogenide glass

Pascal Masselin, David Le Coq, Arnaud Cuisset, and Eugène Bychkov  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 12, pp. 1768-1775 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1006 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a detailed 2D μ-Raman analysis of the refractive index modification (Δn) induced by femtosecond laser filament in the bulk of Ge-Ga-S ternary chalcogenide glass. The invariant illumination and detection geometry during the 2D scanning, allows both qualitative and quantitative determination of the proportion of different structural units to be carried out. The results indicate that during the light-matter interaction, S3Ga-GaS3 ethane like groups are transformed into triclusters of Ga/S. The decreased population of edge- and corner-sharing GeS4/2 tetrahedra implies the formation of mixed triclusters : T/S where T = Ga and/or Ge. Finally, correlations between photostructural changes and Δn are presented.

© 2012 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.2750) Materials : Glass and other amorphous materials
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Laser Materials Processing

Original Manuscript: July 18, 2012
Revised Manuscript: October 15, 2012
Manuscript Accepted: October 20, 2012
Published: November 12, 2012

Pascal Masselin, David Le Coq, Arnaud Cuisset, and Eugène Bychkov, "Spatially resolved Raman analysis of laser induced refractive index variation in chalcogenide glass," Opt. Mater. Express 2, 1768-1775 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2, 219–225 (2008). [CrossRef]
  2. G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11, 013001 (2009). [CrossRef]
  3. R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Topics in Applied Physics (Springer, 2012).
  4. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express19, 7929–7936 (2011). [CrossRef] [PubMed]
  5. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.26, 1726–1728 (2001). [CrossRef]
  6. J. Chan, T. Huser, S. Risbud, and D. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process.76, 367–372 (2003). [CrossRef]
  7. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express16, 20029–20037 (2008). [CrossRef] [PubMed]
  8. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, R. M. Vazquez, R. Osellame, and D. M. Krol, “Femtosecond laser writing of waveguides in zinc phosphate glasses,” Opt. Mat. Express1, 845–855 (2011). [CrossRef]
  9. D. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids354, 416–424 (2008). [CrossRef]
  10. J. D. Musgraves, K. Richardson, and H. Jain, “Laser-induced structural modification, its mechanisms, and applications in glassy optical materials,” Opt. Mater. Express1, 921–935 (2011). [CrossRef]
  11. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441, 47–189 (2007). [CrossRef]
  12. P. Masselin, D. Le Coq, E. Bychkov, E. Lepine, C. Lin, and L. Calvez, “Laser filamentation in chalcogenide glass,” Proc. SPIE7993, 79931B (2010). [CrossRef]
  13. O. Caulier, D. Le Coq, L. Calvez, E. Bychkov, and P. Masselin, “Free carrier accumulation during direct laser writing in chalcogenide glass by light filamentation,” Opt. Express19, 20088–20096 (2011). [CrossRef] [PubMed]
  14. C. Lin, L. Calvez, M. Rozé, H. Tao, X. Zhang, and X. Zhao, “Crystallization behavior of 80 GeS2 − 20 Ga2S3 chalcogenide glass,” Appl. Phys. A: Mater. Sci. Process.97, 713–720 (2009). [CrossRef]
  15. D. Le Coq, P. Masselin, A. Cuisset, and E. Bychkov, “Raman spectra of 80 GeS2 – 20 Ga2S3,” J. Raman Spectrosc. (in preparation).
  16. G. Lucovsky, F. L. Galeener, R. C. Keezer, R. H. Geils, and H. A. Six, “Structural interpretation of the infrared and Raman spectra of glasses in the alloy system Ge1−xSx,” Phys. Rev. B10, 5134–5146 (1974). [CrossRef]
  17. H. Takebe, H. Maeda, and K. Morinaga, “Compositional variation in the structure of GeS glasses,” J. Non-Cryst. Solids291, 14–24 (2001). [CrossRef]
  18. I. P. Kotsalas and C. Raptis, “High-temperature structural phase transitions of GexS1−x alloys studied by Raman spectroscopy,” Phys. Rev. B64, 125210 (2001). [CrossRef]
  19. J. E. Griffiths, J. C. Phillips, G. P. Espinosa, J. P. Remeika, and P. M. Bridenbaugh, “Assignment of the companion A1c line in GeX(S, Se)1−x glasses,” Phys. Status Solidi B122, K11–K15 (1984). [CrossRef]
  20. S. Sugai, “Stochastic random network model in Ge and Si chalcogenide glasses,” Phys. Rev. B35, 1345–1361 (1987). [CrossRef]
  21. K. Inoue, O. Matsuda, and K. Murase, “Raman spectra of tetrahedral vibrations in crystalline germanium dichalcogenides, GeS2 and GeSe2, in high and low temperature forms,” Solid State Commun.79, 905–910 (1991). [CrossRef]
  22. P. M. Bridenbaugh, G. P. Espinosa, J. E. Griffiths, J. C. Phillips, and J. P. Remeika, “Microscopic origin of the companion A1 Raman line in glassy Ge(S, Se)2,” Phys. Rev. B20, 4140–4144 (1979). [CrossRef]
  23. K. Jackson, A. Briley, S. Grossman, D. V. Porezag, and M. R. Pederson, “Raman-active modes of a − GeSe2 and a − GeS2 : a first-principles study,” Phys. Rev. B60, R14985–R14989 (1999). [CrossRef]
  24. S. Blaineau and P. Jund, “Vibrational signature of broken chemical order in a GeS2 glass: A molecular dynamics simulation,” Phys. Rev. B69, 064201 (2004). [CrossRef]
  25. A. Tverjanovich, Y. Tveryanovich, and S. Loheider, “Raman spectra of gallium sulfide based glasses,” J. Non-Cryst. Solids208, 49–55 (1996). [CrossRef]
  26. T. Haizheng, Z. Xiujian, J. Chengbin, and L. Sheng, “Microstructural probing of (1-x) GeS2 - x Ga2S3 system glasses by Raman scattering,” J. Wuhan Univ. Technol.20, 8–10 (2005). [CrossRef]
  27. Y. Ledemi, S. Messaddeq, I. Skhripachev, S. Ribeiro, and Y. Messaddeq, “Influence of Ga incorporation on photoinduced phenomena in GeS based glasses,” J. Non-Cryst. Solids355, 1884–1889 (2009). [CrossRef]
  28. C. Lin, L. Calvez, H. Tao, M. Allix, A. Moréac, X. Zhang, and X. Zhao, “Evidence of network demixing in GeS2 − Ga2S3 chalcogenide glasses: a phase transformation study,” J. Solid State Chem.184, 584–588 (2011). [CrossRef]
  29. A. Cuisset, F. Hindle, J. Laureyns, and E. Bychkov, “Structural analysis of xCsCl − (1 − x)Ga2S3 glasses by means of DFT calculations and Raman spectroscopy,” J. Raman Spectrosc.41, 1050–1058 (2010). [CrossRef]
  30. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. C. Cammi, Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, “Gaussian 03, Revision B. 04,” (Gaussian, Inc., Pittsburgh, PA., 2003).
  31. A. D. Becke, “Density-functional thermochemistry. iii. the role of exact exchange,” J. Chem. Phys.98, 5648–5652 (1993). [CrossRef]
  32. C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B .37, 785–789 (1988). [CrossRef]
  33. D. Long, Raman Spectroscopy (McGraw-Hill, 1977).
  34. M. J. Pelletier, “Quantitative analysis using Raman spectrometry,” Appl. Spectrosc.57, 20A–42A (2003). [CrossRef] [PubMed]
  35. E. Ampem-Lassen, S. T. Huntington, N. M. Dragomir, K. A. Nugent, and A. Roberts, “Refractive index profiling of axially symmetric optical fibers: a new technique,” Opt. Express13, 3277–3282 (2005). [CrossRef] [PubMed]
  36. A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B77, 104205 (2008). [CrossRef]
  37. J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide,” Opt. Mater. Express1, 998–1008 (2011). [CrossRef]
  38. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89, 186601 (2002). [CrossRef] [PubMed]
  39. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13, 4708–4716 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited