OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 12 — Dec. 1, 2012
  • pp: 1809–1821

Oriented creation of anisotropic defects by IR femtosecond laser scanning in silica

M. Lancry, B. Poumellec, R. Desmarchelier, and B. Bourguignon  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 12, pp. 1809-1821 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1285 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Irradiation of non-luminescent silica with polarized IR femtosecond laser light produced a significant amount of luminescent defects. We have investigated the properties of luminescence produced by the defects using UV-VUV excitation experiment depending on the relative orientation of the laser polarization and its scanning direction. Silicon Oxygen Deficient Center (SiODC) is identified. SiODC related luminescence is much stronger when the excitation polarization is parallel to the sample scanning direction and moved at low velocity, regardless of the writing polarization direction. This indicates that the creation of this anisotropic defect is oriented by the movement of the femtosecond laser beam.

© 2012 OSA

OCIS Codes
(160.6030) Materials : Silica
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(350.3450) Other areas of optics : Laser-induced chemistry

ToC Category:
Laser Materials Processing

Original Manuscript: September 11, 2012
Revised Manuscript: November 18, 2012
Manuscript Accepted: November 20, 2012
Published: November 27, 2012

M. Lancry, B. Poumellec, R. Desmarchelier, and B. Bourguignon, "Oriented creation of anisotropic defects by IR femtosecond laser scanning in silica," Opt. Mater. Express 2, 1809-1821 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006). [CrossRef]
  2. M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron.14(5), 1370–1381 (2008). [CrossRef]
  3. J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids354(12-13), 1100–1111 (2008). [CrossRef]
  4. B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express1(4), 766–782 (2011). [CrossRef]
  5. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett.29(1), 119–121 (2004). [CrossRef] [PubMed]
  6. M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express1(4), 711–723 (2011). [CrossRef]
  7. M. Lancry, P. Niay, and M. Douay, “Comparing the properties of various sensitization methods in H2-loaded, UV hypersensitized or OH-flooded standard germanosilicate fibers,” Opt. Express13(11), 4037–4043 (2005). [CrossRef] [PubMed]
  8. M. Lancry and B. Poumellec, “Multiphoton absorption processes & UV laser processing of silica-based materials,” Phys. Rep. (to be published).
  9. E. Bricchi and P. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett.88(11), 111119 (2006). [CrossRef]
  10. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003). [CrossRef] [PubMed]
  11. M. Lancry, B. Dufaure, and B. Poumellec, “Self-aligned porous nanoplanes photo-induced by IR femtosecond irradiation in silica glass,” XII Conference on the Physics of Non-Crystalline Solids, Foz do Iguaçu, Brazil (2009).
  12. J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express1(5), 998–1008 (2011). [CrossRef]
  13. M. Lancry, K. Cook, J. Canning, and B. Poumellec, “Nanogratings and molecular oxygen formation during femtosecond laser irradiation in silica,” in The International Quantum Electronics Conference (IQEC)/The Conference on Lasers and Electro-Optics (CLEO) Pacific Rim (2011).
  14. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse-widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994). [CrossRef]
  15. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.26(21), 1726–1728 (2001). [CrossRef] [PubMed]
  16. H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B104(15), 3450–3455 (2000). [CrossRef]
  17. J. Chan, T. Huser, S. Risbud, and D. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003). [CrossRef]
  18. W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99(12), 123112 (2006). [CrossRef]
  19. W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “Fluorescence and Raman microscopy of waveguides fabricated using kHz and MHz repetition rate femtosecond lasers,” in Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference (CLEO/QELS) (2006).
  20. A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, “Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication,” J. Opt. Soc. Am. B22(10), 2138–2143 (2005). [CrossRef]
  21. A. Zoubir, M. Richardson, T. Cardinal, L. Canioni, A. Brocas, and L. Sarger, “Nonlinear optics of femtosecond laser-modified fused silica: applications to waveguide fabrication,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CFG2.
  22. H. Hosono, K. Kawamura, S. Matsuishi, and M. Hirano, “Holographic writing of micro-gratings and nanostructures on amorphous SiO2 by near infrared femtosecond pulses,” Nucl. Instrum. Methods Phys. Res.191(1-4), 89–97 (2002). [CrossRef]
  23. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B71(12), 125435 (2005). [CrossRef]
  24. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun.191(3-6), 333–339 (2001). [CrossRef]
  25. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express11(9), 1070–1079 (2003). [CrossRef] [PubMed]
  26. M. Lancry, B. Poumellec, P. Niay, M. Douay, P. Cordier, and C. Depecker, “VUV and IR absorption spectra induced in H2-loaded and UV hyper-sensitized standard germanosilicate preform plates through exposure to ArF laser light,” J. Non-Cryst. Solids351(52-54), 3773–3783 (2005). [CrossRef]
  27. L. Skuja, A. N. Streletsky, and A. Pakovich, “A new intrinsic defect in amorphous SiO2: twofold coordinated silicon,” Solid State Commun.50(12), 1069–1072 (1984). [CrossRef]
  28. R. Tohmon, Y. Yamasaka, K. Nagasawa, Y. Ohki, and Y. Hama, “Cause of the 5.0 eV absorption band in pure silica glass+,” J. Non-Cryst. Solids95-96, 671–678 (1987). [CrossRef]
  29. A. Trukhin and H. Fitting, “Investigation of optical and radiation properties of oxygen deficient silica glasses,” J. Non-Cryst. Solids248(1), 49–64 (1999). [CrossRef]
  30. A. Trukhin, B. Poumellec, and J. Garapon, “Study of the germanium luminescence in silica: from non-controlled impurity to germano-silicate core of telecommunication fiber preforms,” J. Non-Cryst. Solids332(1-3), 153–165 (2003). [CrossRef]
  31. H. Nishikawa, E. Watanabe, D. Ito, and Y. Ohki, “Decay kinetics of the 4.4-eV photoluminescence associated with the two states of oxygen-deficient-type defect in amorphous SiO2.,” Phys. Rev. Lett.72(13), 2101–2104 (1994). [CrossRef] [PubMed]
  32. N. Nishikawa, Y. Miyake, E. Watanabe, D. Ito, K. S. Seol, Y. Ohki, K. Ishii, Y. Sakurai, and K. Nagasawa, “Photoluminescence of oxygen-deficient-type defects in α-SiO2,” J. Non-Cryst. Solids222, 221–227 (1997).
  33. M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60(14), 9959–9964 (1999). [CrossRef]
  34. S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79(7), 1695–1709 (2004). [CrossRef]
  35. P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B55(9), 5799–5810 (1997). [CrossRef]
  36. M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids355(18-21), 1057–1061 (2009). [CrossRef]
  37. M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B84(24), 245103 (2011). [CrossRef]
  38. R. Weeks, “Paramagnetic resonance of lattice defects in irradiated quartz,” J. Appl. Phys.27(11), 1376–1381 (1956). [CrossRef]
  39. H. Hosono, K. Kajihara, T. Suzuki, Y. Ikuta, L. Skuja, and M. Hirano, “Vacuum ultraviolet optical absorption band of non-bridging oxygen hole centers in SiO2 glass,” Solid State Commun.122(3-4), 117–120 (2002). [CrossRef]
  40. L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C2(1), 15–24 (2005). [CrossRef]
  41. G. Pacchioni and G. Ierańo, “Ab initio theory of optical transitions of point defects in SiO2,” Phys. Rev. B57(2), 818–832 (1998). [CrossRef]
  42. B. Stefanov and K. Raghavachari, “Photoabsorption of the peroxide linkage defect in silicate glasses,” J. Chem. Phys.111(17), 8039–8042 (1999). [CrossRef]
  43. L. Skuja, K. Kajihara, T. Kinoshita, M. Hirano, and H. Hosono, “The behavior of interstitial oxygen atoms induced by F2 laser irradiation of oxygen-rich glassy SiO2,” Nucl. Instrum. Methods Phys. Res. B191(1-4), 127–130 (2002). [CrossRef]
  44. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids239(1-3), 16–48 (1998). [CrossRef]
  45. E. O'Reilly and J. Robertson, “Theory of defects in vitreous silicon dioxide,” Phys. Rev. B27(6), 3780–3795 (1983). [CrossRef]
  46. L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids149(1-2), 77–95 (1992). [CrossRef]
  47. H. Hosono, Y. Abe, H. Imagawa, H. Imai, and K. Arai, “Experimental evidence for the Si-Si bond model of the 7.6-eV band in SiO2 glass,” Phys. Rev. B Condens. Matter44(21), 12043–12045 (1991). [CrossRef] [PubMed]
  48. S. Agnello, R. Boscaino, M. Cannas, A. Cannizzo, F. M. Gelardi, S. Grandi, and M. Leone, “Spectral heterogeneity of oxygen-deficient centers in Ge-doped silica,” Radiat. Meas.38(4-6), 645–648 (2004). [CrossRef]
  49. A. Anedda, C. Carbonaro, F. Clemente, R. Corpino, and A. Serpi, “Excitation pattern of the blue emission in Ge-doped silica,” J. Non-Cryst. Solids315(1-2), 161–165 (2003). [CrossRef]
  50. J. Garapon, “Etude théorique des défauts déficients en oxygène dans la silice pure ou dopée,” PhD thesis dissertation (Université de Paris 11, Orsay, France, 2001).
  51. M. Lancry, B. Poumellec, and M. Douay, “UV excited luminescence behavior in OH-flooded Ge-doped silica preform plates exposed to 193nm laser light,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JWA58.
  52. M. Leone, R. Boscaino, M. Cannas, and F. Gelardi, “The landscape of the excitation profiles of the αE and β emission bands in silica,” J. Non-Cryst. Solids245(1-3), 196–202 (1999). [CrossRef]
  53. B. Poumellec, V. Mashinsky, A. Trukhin, and P. Guenot, “270 nm absorption and 432 nm luminescence bands in doped silica glasses,” J. Non-Cryst. Solids239(1-3), 84–90 (1998). [CrossRef]
  54. B. Poumellec, T. Taunay, P. Bernage, R. Cortes, and J. Krupa, “Defect population in silica glasses studied by luminescence VUV excitation spectroscopy,” J. Lumin.72-74, 442–445 (1997). [CrossRef]
  55. K. Kajihara, M. Hirano, L. Skuja, and H. Hosono, “Vacuum-ultraviolet absorption of interstitial O2 and H2O molecules in SiO2 glass,” J. Non-Cryst. Solids352(23-25), 2303–2306 (2006). [CrossRef]
  56. K. Kajihara, T. Miura, H. Kamioka, A. Aiba, M. Uramoto, Y. Morimoto, M. Hirano, L. Skuja, and H. Hosono, “Diffusion and reactions of interstitial oxygen species in amorphous SiO2: a review,” J. Non-Cryst. Solids354(2-9), 224–232 (2008). [CrossRef]
  57. C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1-2), 47–61 (2006). [CrossRef]
  58. V. A. Radzig, V. N. Bagratashvili, S. I. Tsypina, P. V. Chernov, and A. O. Rybaltovskii, “Photoinduced reactions of oxygen deficient centers with molecular hydrogen in silica glasses,” J. Phys. Chem.99(17), 6640–6647 (1995). [CrossRef]
  59. P. Feofilov, The Physical Basis of Polarized Emission (Consultants Bureau, 1961).
  60. M. Lancry, B. Poumellec, and M. Douay, “Anisotropic luminescence photo-excitation in H2-loaded Ge-doped silica exposed to polarized 193nm laser light,” J. Non-Cryst. Solids355(18-21), 1062–1065 (2009). [CrossRef]
  61. S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, “The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,” Opt. Lett.37(4), 482–484 (2012). [CrossRef] [PubMed]
  62. B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express16(22), 18354–18361 (2008). [CrossRef] [PubMed]
  63. C. Wu, P. Tsay, H. Cheng, and S. Bai, “Polarized luminescence and absorption of highly oriented, fully conjugated, heterocyclic aromatic rigid-rod polymer poly-p-phenylenebenzobisoxazole,” J. Appl. Phys.95(2), 417–423 (2004). [CrossRef]
  64. P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “'Quill' writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007). [CrossRef]
  65. M. Lancry, W. Yang, B. Poumellec, and B. Bourguignon, “Scan speed dependence of quill writing with ultrashort laser pulses in fused silica,” OSA topical meeting, Femtosecond Laser Microfabrication (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited