OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 2 — Feb. 1, 2012
  • pp: 111–118

Spectral shifts in optical nanoantenna-enhanced hydrogen sensors

Andreas Tittl, Christian Kremers, Jens Dorfmüller, Dmitry N. Chigrin, and Harald Giessen  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 2, pp. 111-118 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1607 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we numerically investigate the nature of spectral shifts in antenna-enhanced hydrogen sensing geometries consisting of a gold bowtie antenna next to a palladium nanodisk. We find through extensive finite element (FEM) simulations that the hydrogen-induced spectral behavior of the system is governed by two competing effects: a small blueshift caused by dielectric function changes in the palladium and a much stronger redshift due to an expansion of the palladium lattice. Our findings enable the accurate numerical characterization and especially the optimization of sensitive antenna-enhanced hydrogen sensors. As a first application, we calculate the performance improvement of gap antennas compared to single cut-wire antenna elements.

© 2012 OSA

OCIS Codes
(160.3900) Materials : Metals
(160.4670) Materials : Optical materials
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: November 21, 2011
Revised Manuscript: December 16, 2011
Manuscript Accepted: December 20, 2011
Published: January 4, 2012

Andreas Tittl, Christian Kremers, Jens Dorfmüller, Dmitry N. Chigrin, and Harald Giessen, "Spectral shifts in optical nanoantenna-enhanced hydrogen sensors," Opt. Mater. Express 2, 111-118 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007). [CrossRef]
  2. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
  3. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011). [CrossRef] [PubMed]
  4. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011). [CrossRef] [PubMed]
  5. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008). [CrossRef] [PubMed]
  6. C. Drake, S. Deshpande, D. Bera, and S. Seal, “Metallic nanostructured materials based sensors,” Int. Mater. Rev.52(5), 289–317 (2007). [CrossRef]
  7. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008). [CrossRef] [PubMed]
  8. K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering,” Phys. Rev. Lett.76(14), 2444–2447 (1996). [CrossRef] [PubMed]
  9. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  10. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  11. J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett.10(9), 3596–3603 (2010). [CrossRef] [PubMed]
  12. T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun.2, 333 (2011). [CrossRef]
  13. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011). [CrossRef] [PubMed]
  14. W. Vargas, I. Rojas, D. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films496(2), 189–196 (2006). [CrossRef]
  15. C. Langhammer, V. P. Zhdanov, I. Zorić, and B. Kasemo, “Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles,” Phys. Rev. Lett.104(13), 135502 (2010). [CrossRef] [PubMed]
  16. E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J.-J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett.95(13), 133504 (2009). [CrossRef]
  17. D. Nau, A. Seidel, R. B. Orzekowsky, S.-H. Lee, S. Deb, and H. Giessen, “Hydrogen sensor based on metallic photonic crystal slabs,” Opt. Lett.35(18), 3150–3152 (2010). [CrossRef] [PubMed]
  18. C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007). [CrossRef] [PubMed]
  19. S. Kishore, J. Nelson, J. Adair, and P. Eklund, “Hydrogen storage in spherical and platelet palladium nanoparticles,” J. Alloy. Comp.389(1-2), 234–242 (2005). [CrossRef]
  20. E. M. Larsson, C. Langhammer, I. Zorić, and B. Kasemo, “Nanoplasmonic probes of catalytic reactions,” Science326(5956), 1091–1094 (2009). [CrossRef] [PubMed]
  21. T. Flanagan and W. A. Oates, “The Palladium-Hydrogen System,” Annu. Rev. Mater. Res.21(1), 269–304 (1991). [CrossRef]
  22. M. L. Tang, N. Liu, J. A. Dionne, and A. P. Alivisatos, “Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals,” J. Am. Chem. Soc.133(34), 13220–13223 (2011). [CrossRef] [PubMed]
  23. J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, “Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy,” J. Appl. Phys.107(2), 023504 (2010). [CrossRef]
  24. F. Yang, S.-C. Kung, M. Cheng, J. C. Hemminger, and R. M. Penner, “Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires,” ACS Nano4(9), 5233–5244 (2010). [CrossRef] [PubMed]
  25. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009). [CrossRef]
  26. T.-R. Lin, S.-W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett.97(6), 063106 (2010). [CrossRef]
  27. O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7(9), 2871–2875 (2007). [CrossRef] [PubMed]
  28. ANSYS, Inc., High-frequency structure simulator (HFSS) (Canonsburg, Pennsylvania, U.S.)
  29. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  30. J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing,” Plasmonics5(2), 161–167 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited