OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 2 — Feb. 1, 2012
  • pp: 153–160

Reactive molten core fabrication of glass-clad amorphous and crystalline oxide optical fibers

J. Ballato, C. McMillen, T. Hawkins, P. Foy, R. Stolen, R. Rice, L. Zhu, and O. Stafsudd  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 2, pp. 153-160 (2012)
http://dx.doi.org/10.1364/OME.2.000153


View Full Text Article

Enhanced HTML    Acrobat PDF (2317 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Described herein are glass-clad optical fibers, fabricated using a molten core fiber draw process, comprising oxide cores in the Bi2O3 – GeO2 system. More specifically, the fibers utilized a borosilicate glass cladding with core compositions in the initial preform ranging from un-reacted crystalline Bi2O3-rich (Bi2O3 + GeO2) powders to stoichiometric crystalline Bi12GeO20. Fibers drawn from the as-purchased crystalline Bi2O3-rich powders were amorphous with a transmission of about 80% at 1.3 μm. Fibers drawn from the crystalline Bi12GeO20 core contained a mixture of crystalline bismuth germanate (Bi2GeO5) and bismuth oxide (δ-Bi2O3/BiO2-x). While representing an initial proof-of-concept, this work shows that commercially-relevant draw processing can be employed to yield fibers with core composition that are very difficult to fabricate using conventional methods and that the molten core method further enables in situ reactive chemistry to take place during fiberization resulting in amorphous or crystalline oxide core fibers depending on initial core composition. Perhaps more importantly is that optical fibers possessing acentric, hence optically nonlinear, oxide crystals can be realized in a scalable manufacturing manner though further optimization is required both of the core chemistry and process conditions in order to achieve a single phase and single crystalline fiber.

© 2012 OSA

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(160.2290) Materials : Fiber materials
(160.4330) Materials : Nonlinear optical materials

ToC Category:
Materials for Fiber Optics

History
Original Manuscript: November 22, 2011
Revised Manuscript: January 4, 2012
Manuscript Accepted: January 10, 2012
Published: January 11, 2012

Citation
J. Ballato, C. McMillen, T. Hawkins, P. Foy, R. Stolen, R. Rice, L. Zhu, and O. Stafsudd, "Reactive molten core fabrication of glass-clad amorphous and crystalline oxide optical fibers," Opt. Mater. Express 2, 153-160 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-2-153


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol.16(6), 399–408 (2010). [CrossRef]
  2. R. Feigelson, “Pulling optical fibers,” J. Cryst. Growth79(1-3), 669–680 (1986). [CrossRef]
  3. J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt.34(30), 6848–6854 (1995). [CrossRef] [PubMed]
  4. S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “Reactive Molten Core Fabrication of Silicon Optical Fiber,” Opt. Mater. Express1(6), 1141–1149 (2011). [CrossRef]
  5. B. Kusz, K. Trzebiatowski, and R. Barczynski, “Ionic conductivity of bismuth silicate and bismuth germanate glasses,” Solid State Ion.159(3-4), 293–299 (2003). [CrossRef]
  6. A. Kaplun and A. Meshalkin, “Stable and metastable phase equilibrium in the system Bi2O3 – GeO2,” J. Cryst. Growth167(1-2), 171–175 (1996). [CrossRef]
  7. M. Weber and R. Monchamp, “Luminescence of Bi4Ge3O12: Spectral and Decay Properties,” J. Appl. Phys.44(12), 5495–5499 (1973). [CrossRef]
  8. J. Shim, J. Leea, A. Yoshikawaa, M. Niklb, D. Yoonc, and T. Fukudaa, “Growth of Bi4Ge3O12 single crystal by the micro-pulling-down method from bismuth rich composition,” J. Cryst. Growth243(1), 157–163 (2002). [CrossRef]
  9. M. Zhuravleva, V. Chani, T. Yanagida, and A. Yoshikawa, “The micro-pulling-down growth of Bi4Si3O12 (BSO) and Bi4Ge3O12 (BGO) fiber crystals and their scintillation efficiency,” J. Cryst. Growth310(7-9), 2152–2156 (2008). [CrossRef]
  10. H. Farhi, S. Belkahla, K. Lebbou, and C. Dujardin, “BGO fibers growth by μ-pulling down technique and study of light propagation,” Phys. Procedia2(3), 819–825 (2009). [CrossRef]
  11. D. Bortfeld and H. Meier, “Refractive indices and electro-optic coefficients of the eulitities Bi4Ge3O12 and Bi4Si3O12,” J. Appl. Phys.43(12), 5110–5111 (1972). [CrossRef]
  12. N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Third-order optical nonlinearities and their ultrafast response in Bi2O3-B2O3-SiO2 glasses,” J. Opt. Soc. Am. B16(11), 1904–1908 (1999). [CrossRef]
  13. Y. Kuroiwa, N. Sugimoto, K. Ochiai, S. Ohara, Y. Fukasawa, S. Ito, S. Tanabe, and T. Hanada, “Fusion Spliceable and High Efficient Bi2O3-based EDF for Short-length and Broadband Application Pumped at 1480 nm,” in Optical Fiber Communication Conference, 2001 OSA Technical Digest Series (Optical Society of America, 2001), paper TuI5.
  14. J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the Fabrication of All-Glass Optical Fibers from Crystals,” J. Appl. Phys.105(5), 053110 (2009). [CrossRef]
  15. B. Cockayne, “The uses and enigmas of the Al2O3-Y2O3 phase system,” J. Less Common Met.114(1), 199–206 (1985). [CrossRef]
  16. Powder Diffraction Standard Number: 00–027–0053 (International Centre for Diffraction Data (ICDD), Newtown Square, PA, USA).
  17. J. Haines, O. Cambon, E. Philippot, L. Chapon, and S. Hull, “A neutron diffraction study of the thermal stability of the alpha-quartz-type structure in germanium dioxide,” J. Solid State Chem.166(2), 434–441 (2002). [CrossRef]
  18. Powder Diffraction Standard Number: 01–073–9108 (International Centre for Diffraction Data (ICDD), Newtown Square, PA, USA).
  19. M. Morris, H. McMurdie, E. Evans, B. Paretzkin, H. Parker, N. Pyrros, and C. Hubbard, “Standard x-ray diffraction patterns - data for 71 substances,” NBS Monograph25(Sec. 20), 19 (1984).
  20. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express16(23), 18675–18683 (2008). [CrossRef] [PubMed]
  21. K. Kikuchi, K. Taira, and N. Sugimoto, “Highly-nonlinear Bismuth Oxide-based glass fibers for all-optical signal processing,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThY6.
  22. M. A. Melkumov, I. A. Bufetov, A. V. Shubin, S. V. Firstov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Laser diode pumped bismuth-doped optical fiber amplifier for 1430 nm band,” Opt. Lett.36(13), 2408–2410 (2011). [CrossRef] [PubMed]
  23. V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, “Bismuth-doped-glass optical fibers--a new active medium for lasers and amplifiers,” Opt. Lett.31(20), 2966–2968 (2006). [CrossRef] [PubMed]
  24. H. Hartwig, “On the Structure of Bismuthsesquioxide: The α, β, γ, and δ-phase,” Z. Anorg. Allg. Chem.444(1), 151–166 (1978). [CrossRef]
  25. B. Begeman and M. Jansen, “Bi407, the First Defined Binary. Bismuth(lll,V)-Oxide,” J. Less-Common Met.156, 123–135 (1989).
  26. P. Halasyamani and K. Poeppelmeier, “Noncentrosymmetric Oxides,” Chem. Mater.10(10), 2753–2769 (1998). [CrossRef]
  27. L. Dimesso, G. Gnappi, A. Montenero, P. Fabeni, and G. P. Pazzi, “The crystallization behaviour of bismuth germanate glasses,” J. Mater. Sci.26(15), 4215–4219 (1991). [CrossRef]
  28. B. N. Samson, P. A. Tick, and N. F. Borrelli, “Efficient neodymium-doped glass-ceramic fiber laser and amplifier,” Opt. Lett.26(3), 145–147 (2001). [CrossRef] [PubMed]
  29. N. Gupta, C. McMillen, R. Singh, R. Podila, A. M. Rao, T. Hawkins, P. Foy, S. Morris, R. Rice, K. F. Poole, L. Zhu, and J. Ballato, “Annealing of Silicon Optical Fibers,” J. Appl. Phys.110(9), 093107 (2011). [CrossRef]
  30. S. Morris, C. McMillen, T. Hawkins, P. Foy, R. Stolen, R. Rice, and J. Ballato, “The influence of core geometry on the crystallography of silicon optical fiber,” J. Cryst. Growth (to be published), doi:. [CrossRef]
  31. J. White and A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett.37(1), 5–7 (1980). [CrossRef]
  32. J. Martin, I. Foldvari, and C. Hunt, “The low-temperature photochromic response of bismuth germanium oxide,” J. Appl. Phys.70(12), 7554–7559 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited