OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 2 — Feb. 1, 2012
  • pp: 190–204

Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process

Narges Fahim, Zi Ouyang, Yinan Zhang, Baohua Jia, Zhengrong Shi, and Min Gu  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 2, pp. 190-204 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2308 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multicrystalline silicon solar cells play an increasingly important role in the world photovoltaic market. Boosting the comparatively low energy conversion efficiency of multicrystalline silicon solar cells is of great academic and industrial significance. In this paper, Au nanoparticles of an optimized size, synthesized by the iterative seeding method, were integrated onto industrially available surface-textured multicrystalline silicon solar cells via a dip coating method. Enhanced performance of the light absorption, the external quantum efficiency and the energy conversion efficiency were consistently demonstrated, resulting from the light scattering by the sized-tailored Au nanoparticles placed on the front surface of the solar cells, particularly in the spectral range from 800 to 1200 nm, an enhancement of the external quantum efficiency by more than 11% near λ = 1150 nm and the short-circuit current by 0.93% were both observed. As a result, an increase in the energy conversion efficiency up to 1.97% under the standard testing conditions (25°C, global air mass 1.5 spectrum, 1000 Wm−2) was achieved. This study opens new perspectives for plasmonic nanoparticle applications for photon management in multicrystalline silicon solar cells.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.3915) Thin films : Metallic, opaque, and absorbing coatings
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: December 16, 2011
Revised Manuscript: January 13, 2012
Manuscript Accepted: January 13, 2012
Published: January 20, 2012

Narges Fahim, Zi Ouyang, Yinan Zhang, Baohua Jia, Zhengrong Shi, and Min Gu, "Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process," Opt. Mater. Express 2, 190-204 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Schmela, “PV in the fast lane: market survey on world cell production in 2000,” Photon. Int.3, 32–35 (2001).
  2. A. G. Aberle, P. P. Altermatt, G. Heiser, S. J. Robinson, A. Wang, J. Zhao, U. Krumbein, and M. A. Green, “Limiting loss mechanisms in 23% efficient silicon solar cells,” J. Appl. Phys.77(7), 3491–3504 (1995). [CrossRef]
  3. T. L. Temple and D. M. Bagnall, “Optical properties of gold and aluminium nanoparticles for silicon solar cell applications,” J. Appl. Phys.109(8), 084343 (2011). [CrossRef]
  4. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005). [CrossRef]
  5. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96(12), 7519–7526 (2004). [CrossRef]
  6. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007). [CrossRef]
  7. P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008). [CrossRef]
  8. Y. Tanaka, H. Hachimura, T. Mishima, and M. Ihara, “Plasmon effect in Si solar cells coated with a thin polymer film containing silver or Au nanoparticles,” ECS Trans.33, 81–91 (2011). [CrossRef]
  9. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007). [CrossRef]
  10. S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett.8(2), 624–630 (2008). [CrossRef] [PubMed]
  11. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles,” Prog. Photovolt. Res. Appl.18(7), 500–504 (2010). [CrossRef]
  12. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009). [CrossRef]
  13. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.)241, 20–22 (1973).
  14. K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particles size and shape,” Chem. Mater.12(2), 306–313 (2000). [CrossRef]
  15. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal Au nanoparticles,” J. Phys. Chem. B103(21), 4212–4217 (1999). [CrossRef]
  16. J. Rodríguez-Fernández, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, “Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes,” Langmuir22(16), 7007–7010 (2006). [CrossRef] [PubMed]
  17. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon‐on‐insulator waveguides using metal island films,” Appl. Phys. Lett.69(16), 2327–2329 (1996). [CrossRef]
  18. K. L. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [CrossRef]
  19. S. Pillai, K. R. Catchpole, T. Trupke, T. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light emitting diodes using surface plasmons,” Appl. Phys. Lett.88(16), 161102 (2006). [CrossRef]
  20. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle enhanced photo- detectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998). [CrossRef]
  21. N. C. Das, “Tunable infrared plasmonic absorption by metallic nanoparticles,” J. Appl. Phys.110(4), 046101 (2011). [CrossRef]
  22. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  23. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys.105(11), 114310 (2009). [CrossRef]
  24. R. D. Tilley and S. Saito, “Preparation of large scale monolayers of gold nanoparticles on modified silicon substrates using a controlled pulling method,” Langmuir19(12), 5115–5120 (2003). [CrossRef]
  25. T.-S. Yoon, J. Oh, S.-H. Park, V. Kim, B. G. Jung, S.-H. Min, J. Park, T. Hyeon, and K.-B. Kim, “Single and multiple-step dip coating of colloidal maghemite (γ-Fe2O3) nanoparticles onto Si, Si3N4, and SiO2 substrates,” Adv. Funct. Mater.14(11), 1062–1068 (2004). [CrossRef]
  26. X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011). [CrossRef]
  27. Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron.15(4), 1218–1225 (2009). [CrossRef]
  28. P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008). [CrossRef] [PubMed]
  29. M.-A. Tsai, P.-C. Tseng, H.-C. Chen, H.-C. Kuo, and P. Yu, “Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays,” Opt. Express19(S1), A28–A34 (2011). [CrossRef] [PubMed]
  30. H.-C. Chen, C.-C. Lin, H.-W. Han, Y.-L. Tsai, C.-H. Chang, H.-W. Wang, M.-A. Tsai, H. C. Kuo, and P. Yu, “Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers,” Opt. Express19(S5), A1141–A1147 (2011). [CrossRef] [PubMed]
  31. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008). [CrossRef]
  32. T. J. Kippenberg, A. L. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett.103(2), 027406 (2009). [CrossRef] [PubMed]
  33. J. N. Munday, D. M. Callahan, C. Chen, and H. A. Atwater, “Three efficiency benefits from thin film plasmonic solar cells,” in Proceedings of Photovoltaic Specialists conference, 37th IEEE PVSC, June 19–24 (Settle, Washington, 2011), # 279.
  34. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010). [CrossRef] [PubMed]
  35. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett.101(19), 197401 (2008). [CrossRef] [PubMed]
  36. Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics4(2), 107–113 (2009). [CrossRef]
  37. M. A. Greenwood, “Photocurrent altered with nanoparticles,” Photon. Spectra106, (2008), http://www.photonics.com/Article.aspx?AID=32563 .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited